Abstract:
The present teachings relate to an electronic device comprising: a first module for generating an audio signal; a second module for generating an ultrasonic signal; a mixer for generating a combined signal; a transmitter for outputting an acoustic signal dependent upon the combined signal; and, a processing means for controlling the ultrasonic signal; wherein, in response to receiving a first instruction signal for initiating the ultrasonic signal, the processing means is configured to increase the amount of the ultrasonic signal in the combined signal from an essentially zero value to a predetermined value over a predetermined enable time-period. The present teachings also relate to an electronic device configured to decrease the amount of the ultrasonic signal in the combined signal from an essentially zero value to a predetermined value over a predetermined disable time-period, and to an electronic device configured to remove the audio signal from the combined signal whilst preventing pop-noise, and to an electronic device capable of replacing the ultrasonic signal whilst minimizing the processing time. The present teachings further relate to a method for reducing the occurrence of pop noise in an acoustic signal associated with: initiating the ultrasonic signal in the combined signal, terminating the ultrasonic signal in the combined signal, terminating the audio signal in the combined signal, and replacing the ultrasonic signal in the combined signal. The present teachings also relate to a computer software product for implementing any of the method steps disclosed herein, and to a computer storage medium storing the computer software herein disclosed.
Abstract:
Provided are systems and methods for reversing the conventional roles of central and peripheral devices in a BLE network. Doing so includes implementing an end node (EN) as the sole initiator of a connection between a particular EN and a particular access point (AP). Such implementation includes determining a coordinate location of the EN based on position information for multiple reference points (RPs) and a time of flight (TOF) of an ultrasonic waveform transmitted by each of the RPs.
Abstract:
An acoustic model determination approach for a real-time locating system is disclosed. The system includes one or more transmitting devices and one or more mobile devices. The acoustic model may be determined by deriving an acoustic representation of sub-structures within the building, and then forming the acoustic model based on the acoustic representation and the location and orientation of the static acoustic transmitting device. In another embodiment, an acoustic signal is transmitted from a static acoustic transmitting device, with the reflected signals received by the same static acoustic transmitting device in a receiving mode. Based on these received acoustic signals, the acoustic model is formed based on the reflected signals and the location and orientation of the static acoustic transmitting device.
Abstract:
A level measurement instrument comprises an analog circuit for transmitting a pulse signal at a target of interest and receiving reflected echoes of the pulse signal and developing an echo waveform representative of the reflected echoes. A programmed digital circuit is operatively coupled to the analog circuit and comprises a programmed controller and memory. The controller is operatively programmed to identify peaks in the echo waveform and store an active peak list in the memory from a current measurement scan and a buffer peak list from prior measurement scans. The controller is further programmed to match peaks in the active peak list to peaks in the buffer peak list, to select a target peak from the active peak list based on which of the matched peaks have moved, and determining material level responsive to the target peak.
Abstract:
Static transmitter stations (4,6) are used to determine the position of a mobile receiver unit (10). Each transmitter station transmits an ultrasonic signal comprising a transmitter-specific phase-shifting signature (40). The receiver unit receives a signal and identifies a transmitter station by its signature. It uses the received signal and the identity of the source transmitter station to determine the position of the mobile receiver unit. The signature may comprise two patterns (30,34) phase-shift-key (PSK)-encoded on respective carrier signals of the same frequency but different phase, with the patterns being offset from each other by a transmitter-specific offset. The signal from the transmitter station may also include a PSK-encoded message (44).
Abstract:
A system, methods, and apparatus for sonic signaling communication are disclosed. In an example embodiment, a broadcast device transmits a sonic signal including an audible signal component including primary information and an inaudible signal component including secondary information. The primary information is audibly transmitted from the broadcast device for reception by a user. The inaudible signal component is received by a user device configured to take an action responsive to the receipt of the secondary information.
Abstract:
Methods and apparatus to provide sonobuoys that can be deployed on a sea bottom and surface upon detection of an object of interest. Upon reaching the surface, the sonobuoy can transmit information, such as position information, to a receiver on an aircraft, satellite, and/or remote location.
Abstract:
A GPS-based underwater cable positioning system for use in determining the shape and position of hydrophone streamers towed underwater behind survey vessels involved in marine seismic prospecting. The system includes a plurality of surface units towed behind the vessel. Each surface unit includes a GPS receiver to receive radio frequency GPS signals and to determine its positions. Each surface unit also has an acoustic transmitter to transmit an acoustic message signal representing its position and an optional time stamp into the water. Acoustic receiver units, attached spaced apart locations along one or more streamer cables, each include an acoustic receiver to receive the acoustic message signals from the surface units and to determine its position from the message signals. To augment the message signals from the surface units at locations distant from the surface units, acoustic transceiver units may be used. The acoustic transceiver units are attached to the streamer cables at ranges between the surface units and distant acoustic receiver units. The acoustic transceiver units each include an acoustic receiver that performs as the receivers in the acoustic receiver units and an acoustic transmitter to transmit acoustic message signals representing its position and an optional time stamp into the water to be received by the acoustic receiver units. In this way, the positions and shapes of towed streamer cables can be determined.
Abstract:
A system for detecting the position of a person in a pool (2), comprises a transmitter positioned in the pool (2), a receiver (20) for receiving the signal from the transmitter (16a-16f) and generating a stimulus, with the receiver (20) being positioned on the person. The pool (2) may contain a lap lane (4) and a series of transmitters (18a-18f) traverses the center of the lap lane. The receiver (20) may comprise a disc member with a suction means for attaching to a person. In another embodiment, the transmitter and the receiver are configured as a single unit (42). A method of detecting the position of the swimmer within a pool includes placing the person within the lap lane (6) and allowing the person to advance within the lap lane (6). A signal is transmitted from a transmitter (16) and the signal is received. In response to the received signal, a first tactile stimulus is generated which is felt by the person. This tactile stimulus indicates to the person that he/she is on course. In the event that the tactile stimulus is no longer sensed, the method may further comprise altering the course that the person is transverse within the lap lane (6). The signal from the transmitter (16a-16f) located on the bottom of the pool (2) continues to transmit a signal which in turn said signal is received once the receiver is positioned above the transmitter (16).