DÉTECTEUR DE RAYONNEMENT IONISANT COMPORTANT UN MODULATEUR POUR MODULER L'INTENSITÉ DU RAYONNEMENT

    公开(公告)号:WO2023083832A1

    公开(公告)日:2023-05-19

    申请号:PCT/EP2022/081180

    申请日:2022-11-08

    IPC分类号: G01T1/16 G01T3/00 G01T1/178

    摘要: Procédé de caractérisation radiologique d'un objet émettant, à l'aide d'un dispositif,, le dispositif comportant un détecteur du rayonnement ionisant, configuré pour interagir avec des particules formant le rayonnement ionisant et pour générer un signal de détection dépendant d'une intensité du rayonnement ionisant incident au détecteur. Le dispositif comporte également un modulateur, comportant au moins une portion absorbante, configurée pour absorber une partie du rayonnement ionisant. Le dispositif comporte une unité de commande pour déplacer périodiquement la portion absorbante face au collimateur, ainsi qu'une unité de traitement pour estimer une intensité du rayonnement incident au dispositif de détection.

    DOSIMETER FOR FLASH RADIOTHERAPY
    3.
    发明申请

    公开(公告)号:WO2023002348A1

    公开(公告)日:2023-01-26

    申请号:PCT/IB2022/056601

    申请日:2022-07-18

    发明人: BEDOGNI, Roberto

    IPC分类号: G01T1/02 G01T3/00 A61N5/10

    摘要: The invention consists of a dosimeter for charged particles and gamma rays capable of operating linearly when exposed to both continuous and pulsed beams, at an instant dose intensity from 0.001 MGy/s to 10 MGy/s. The dosimeter finds application in the new types of ultra-high rate radiotherapy (flash-radiotherapy) as well as in industrial sterilization treatments. The invention also consists of a method of using said dosimeter.

    SYSTEMS AND METHODS FOR COSMOGENIC NEUTRON SENSING MOISTURE DETECTION IN AGRICULTURAL SETTINGS

    公开(公告)号:WO2022081582A1

    公开(公告)日:2022-04-21

    申请号:PCT/US2021/054591

    申请日:2021-10-12

    IPC分类号: G01N23/09 G01T3/00 G01V5/10

    摘要: An apparatus for cosmogenic neutron sensing to detect moisture includes a thermal neutron proportional counter. A housing is formed at least partially from a moderating material, which is positioned around the thermal neutron proportional counter. A proportional counter electronics unit is within the housing and has a preamplifier and a shaping amplifier. The preamplifier and shaping amplifier are directly connected to the thermal neutron proportional counter. At least one photovoltaic panel provides electrical power to the thermal neutron proportional counter. A data logger is positioned vertically above the thermal neutron proportional counter and proportional counter electronics unit. A signal from the thermal neutron proportional counter is transmitted through the proportional counter electronics unit and is received by the data logger. The signal indicates a moisture content within a measurement surface of the thermal neutron proportional counter.

    CRYSTAL-COATED BNNT SCINTILLATORS
    6.
    发明申请

    公开(公告)号:WO2021150665A2

    公开(公告)日:2021-07-29

    申请号:PCT/US2021/014288

    申请日:2021-01-21

    申请人: BNNT, LLC

    摘要: Boron nitride nanotubes (BNNTs) having a second scintillating material, and in some embodiments an enhanced 10B content, may be used for efficient thermal neutron detection. The second scintillating material may be a crystal coating on the nanotubes, and/or crystal dispersed within the BNNT material. Crystal-coated BNNT materials enable detecting thermal neutrons by detecting light from the decay products of the thermal neutron's absorption on the 10B atoms in the BNNT material, as the resultant decay products pass through the crystal-coating. Embodiments of thermal neutron detectors are described. Methods for preparing BNNTs with a second scintillating material are also described.

    A NEUTRON DETECTOR WITH SOLID-LIQUID MODERATORS FOR MEASURING NEUTRONS AT DIFFERENT ENERGY RANGES

    公开(公告)号:WO2021034284A1

    公开(公告)日:2021-02-25

    申请号:PCT/TR2019/051020

    申请日:2019-12-03

    IPC分类号: G01T5/00 G01T3/02 G01T3/00

    摘要: The neutron detector that allows the measurement of neutrons under different energies enable the solid and liquid moderators with changeable thicknesses to be used in the same design. The detector is simply comprised of a cylindrical solid moderator movement chamber (1), a detector measurement chamber (2) and a liquid moderator storage chamber (3), which are stacked on each other. The detector measurement chamber (2) is formed of a detector (4) at the center and a tungsten sheath (9) providing a shield to the detector by surrounding it, against gamma radiation. The solid moderator motion lever (5) is fixed to the solid moderators (7) and hence enables them to move in the vertical axis.

    PERSONAL WEARABLE DOSIMETER FOR NEUTRONS
    8.
    发明申请

    公开(公告)号:WO2020255080A1

    公开(公告)日:2020-12-24

    申请号:PCT/IB2020/055807

    申请日:2020-06-19

    发明人: BEDOGNI, Roberto

    IPC分类号: G01T1/02 G01T3/00

    摘要: The invention relates to a dosimeter (A) wearable by a human subject which includes: at least a first slow neutron sensor S1; a matrix containing a certain amount of absorbent material for slow neutrons; at least a second slow neutron sensor S2; a moderator consisting of or comprising polyethylene, hydrogenated plastic, water, paraffin or other hydrogenated or deuterated compounds.

    FIBER-BASED DIRECTIONAL RADIATION DETECTOR SYSTEM

    公开(公告)号:WO2020051257A9

    公开(公告)日:2020-03-12

    申请号:PCT/US2019/049610

    申请日:2019-09-04

    摘要: Radiation detector systems are disclosed that include scintillating optical fibers arraigned in a bundle, the bundle having a first end and a second end. The scintillating optical fibers are arraigned to receive incident radiation associated with a radiation source, emit photons in response to the incident radiation, and transport the photons to a first end and a second end of a respective one of the plurality of scintillating optical fibers. The radiation detector systems further include an asynchronous detector array positioned relative to one of the first end or second end of the bundle to detect the photons. The radiation detector systems further includes direction circuitry configurable to calculate a direction of the radiation source relative to the radiation detector system based at least in part on the direction of travel of an electron or other charged particle associated with the incident radiation source.