Abstract:
Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Abstract:
A process for the ozonolysis of an alkane may comprise combining an alkane and ozone in a liquid phase medium comprising CO 2 under conditions sufficient to oxidize the alkane to produce one or more non-combustion products. The liquid phase medium may be free of a super acid.
Abstract:
The present invention relates to a process for producing cumene and/or sec- butylbenzene comprising contacting benzene with a mixed olefins stream comprising ethylene and an alkylation agent in the presence of a selective alkylation catalyst under selective alkylation conditions.
Abstract:
Methods of making fuel are described herein. A method may include providing a first working fluid, a second working fluid, and a third working fluid. The method may also include exposing the first working fluid to a first high voltage electric field to produce a first plasma, exposing the second working fluid to a second high voltage electric field to produce a second plasma, and exposing the third working fluid to a third high voltage electric field to produce a third plasma. The method may also include providing and contacting a carbon-based feedstock with the third plasma, the second plasma, and the first plasma within a processing chamber to form a mixture, cooling the mixture using a heat exchange device to form a cooled mixture, and contacting the cooled mixture with a catalyst to form a fuel.
Abstract:
A process for oxidizing an alkyl-aromatic compound is described. The process includes contacting the alkyl-aromatic compound, a solvent comprising a precursor of at least one ionic liquid, a bromine source, a catalyst, and an oxidizing agent to produce an oxidation product comprising at least one of an aromatic alcohol, an aromatic aldehyde, an aromatic ketone, and an aromatic carboxylic acid.
Abstract:
In this disclosure, a system is described, comprising a shear device with at least one inlet and at least one outlet and a mixing vessel with at least one inlet and at least one outlet, wherein an inlet of the shear device is in fluid communication with an outlet of the mixing vessel. In certain embodiments, the shear device and the mixing vessel form a loop for fluid communication. Also disclosed herein is a method of high shear oxidation, comprising mixing an oxidant with a substrate to form a substrate-oxidant mixture and applying shear to the substrate-oxidant mixture to form a product. The product includes ethylene oxide, propylene oxide, terephthalic acid, phenol, acrylonitrile, maleic anhydride, phthalic anhydride, nitric acid, caprolactam, oxidized polyethylene, oxidized polypropylene, oxidized polyethylene copolymers, and oxidized polypropylene copolymers. Suitable oxidant includes air, oxygen, ozone, peroxide, organic peroxide, halogen, oxygen-containing gas, and halogen-containing gas.
Abstract:
Alcohols, ethers, and olefins are manufactured from alkanes by mixing an alkane and bromine in a reactor to form alkyl bromide and hydrogen bromide. The alkyl bromide only or the alkyl bromide and the hydrogen bromide are directed into contact with metal oxide to form an alcohol and/or an ether, or an olefin and metal bromide. The metal bromide is oxidized to form original metal oxide and bromine, both of which are recycled.
Abstract:
Processes for converting a hydrocarbon reactant into an alcohol compound and/or a carbonyl compound are disclosed, and these processes include the steps of irradiating the hydrocarbon reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state with a light beam at a wavelength in the UV- visible spectrum to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the alcohol compound and/or the carbonyl compound. In addition, these processes can further comprise a step of calcining all or a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Abstract:
A process for making phenol and/or cyclohexanone comprises: (A) oxidizing a cyclohexylbenzene feed to obtain an oxidation product comprising cyclohexylbenzene, cyclohexyl-1 -phenyl- 1 -hydroperoxide and phenol; (B) separating at least a portion of the oxidation product to obtain a first fraction comprising cyclohexyl- 1 -phenyl- 1 -hydroperoxide and a second fraction comprising cyclohexylbenzene and phenol; (C) removing at least a portion of the phenol from at least a portion of the second fraction to obtain a third fraction; (D) recycling at least a portion of the cyclohexylbenzene in the third fraction to the oxidizing step (A); and (E) contacting at least a portion of the cyclohexyl-1 -phenyl- 1 -hydroperoxide in the first fraction with an acid catalyst in a cleavage reactor under cleavage conditions to obtain a cleavage product comprising phenol and cyclohexanone.