Abstract:
An interface circuit may convert an input electrical signal at an input node in a first power domain having a first ground or reference voltage into an output electrical signal at an output node in a second power domain having a second ground or reference voltage. Notably, a level-shifting circuit in the interface circuit may selectively electrically couple to the input node and the output node. Then, when there is electrical coupling, the level-shifting circuit may perform level shifting between the first power domain and the second power domain. The level shifting may involve: passing, using a first filter, frequencies in the input electrical signal below a first corner frequency; passing, using a second filter in parallel with the first filter, frequencies in the input electrical signal above a second corner frequency; and combining outputs of the first filter and the second filter as the output electrical signal.
Abstract:
A latch array including a row of master latches coupled to columns of slave latches. Each master latch includes an OR-AND-Inverter (OAI) gate cross-coupled with a NAND gate to receive and latch an input data, and each slave latch includes an AND-OR-Inverter (AOl) gate cross-coupled with a NOR gate to receive and latch the data from, the master latch, and an inverter including an input coupled to the AOT gate and an output to produce an output data based on the input data. Alternatively, each master latch includes an AND-OR-Inverter (AOI) gate cross-coupled with a NOR gate to receive and latch an input data, and each slave latch includes an OR-AND-Inverter (OAI) gate cross-coupled with a NAND gate to receive and latch the data from the master latch, and an inverter including an input coupled to the OAI gate and an output to produce an output data.
Abstract:
An output driver in an integrated circuit includes a voltage shifter. The output driver has a low voltage section configured to provide a low voltage signal responsive to an input signal and a high voltage section configured to provide a high voltage signal responsive to the input signal. A first biasing circuit is configured to provide a bias to a first transistor in the high voltage section such that the bias is modified during a transition in the output signal. A second biasing circuit is configured to turn on a second transistor in the high voltage section when the output signal is at a low voltage level. The second transistor is configured to discharge a terminal of the first transistor. The input signal switches between 0 Volts and 0.9 Volts. The output signal switches between 0 Volts and 1.2 Volts or between 0 Volts and 1.8 Volts.
Abstract:
An improved level shifter is disclosed. The level shifter is able to achieve a switching time below 1 ns using a relatively low voltage for VDDL, such as 0.75V. The improved level shifter comprises a coupling stage and a level-switching stage. A related method of level shifting is also disclosed.
Abstract:
A configurable driver integrated circuit is disclosed having a plurality of input/output terminals for interfacing exterior of the integrated circuit. The integrated circuit includes a plurality of driver circuits, with each driver circuit including a transistor having a source and a drain, and each of the source and drain thereof connected to a dedicated and respective one of the input/output terminals and further includes a gate driver for driving a gate of the transistor, with supply inputs associated with a floating voltage domain, and each driver circuit also includes a level shift circuit for shifting the level of a logic signal from a fixed voltage domain to the floating voltage domain. A switching circuitry generates switching signals in a fixed voltage domain for controlling the operation of each of the driver circuits in accordance with a predetermined configuration defined by external circuit.
Abstract:
An integrated circuit is disclosed for data retention with data migration. In an example aspect, the integrated circuit includes a logic block, a memory block, and retention control circuitry coupled to the logic and memory blocks. The logic block includes multiple retention‑relevant storage devices to store first data and second data. The multiple retention-relevant storage devices include a first group of retention‑relevant storage devices to store the first data and a second group of retention-relevant storage devices to store the second data. The memory block maintains memory data in the memory block during a retention operational mode. The retention control circuitry causes the retention-relevant storage devices of the second group to be activated into multiple scan chains and also migrates the second data between the second group and the memory block using the multiple scan chains to accommodate transitions between the retention operational mode and a regular operational mode.
Abstract:
Layouts of transmission gates and related techniques and systems are described. An integrated circuit may include first and second transmission gates (150, 160) disposed in a column, and metal wires (174a, 174b, 188a). The first transmission gate (150) includes first and second control terminals (112, 122), and the second transmission gate (160) includes first and second control terminals (132, 142). The metal wires extend between the first and second transmission gates in a direction substantially orthogonal to the column, and include a first control wire (104) coupled to the first control terminals of the first and second transmission gates.