US09826670B2
A vehicle includes a power receiving portion that is mounted below a floor panel and that receives electric power in a contactless manner from a power transmitting portion provided outside the vehicle, an electromagnetic shield that prevents an electromagnetic field from passing through, a power receiving portion cover that allows the electromagnetic field to pass through and covers the power receiving portion, and an undercover that allows the electromagnetic field to pass through and covers the power receiving portion cover.
US09826663B2
A heat dissipation system for cabinet servers supported on a raised floor includes a condenser, airflow adjusting apparatus, a controller, and a temperature sensor located at an air outlet of each cabinet server. The raised floor defines air outlets adjacent to each cabinet server. The adjusting apparatus are mounted to the raised floor and aligning with the air outlets. Each of the airflow adjusting apparatus includes a number of shielding members rotatable relative to the raised floor and aligning with the air outlets, and a motor electrically coupled to the controller. The temperature sensors are electrically coupled to the controller. The condenser generates cool air entering the raised floor through the air inlet, to enter the cabinet servers through the airflow adjusting apparatus and the air outlets. The controller controls the shielding members to rotate, to change the opening size of the air outlets of the raised floor.
US09826662B2
A reusable phase-change thermal interface structure having a metal based foam and a fusible metal based alloy is provided. In a solid phase of the fusible metal based alloy the fusible metal based alloy is disposed at least in a portion of the metal based foam. Further, in a liquid phase of the fusible metal based alloy the fusible metal based alloy is disposed at least on a portion of one or more outer surfaces of the metal based foam.
US09826656B2
The present disclosure describes embodiments of apparatuses and methods related to a moveable server rack in a data center. The server rack may include a chassis with a plurality of servers and a receptacle to couple with a mobile robot. The mobile robot may move the server rack from a first location to a second location in a data center. The server rack may include indices of alignment to provide an indication of docking alignment of the server rack to at least the second docking location, a power connector system to connect a main power source to the plurality of servers at the second location, and an input/output connector to connect a data center network to the plurality of servers at the second location. Other embodiments may be described and/or claimed.
US09826649B2
A removable door for an electronic device. The door may include a spring plate having a first second surface, and a plurality of springs attached to a perimeter of the spring plate. The plurality of springs may engage a portion of an enclosure of the electronic device to retain at least the spring plate within an access opening formed in the enclosure. The door may also include a door cap covering the access opening formed in the enclosure. The door cap may include an interior surface connected to the first surface of the spring plate, and an exterior surface forming a portion of an outer surface of the enclosure. Additionally, the door may include a cover connected to the second surface of the spring plate. The cover may face an interior of the enclosure and separated from the door cap by the spring plate.
US09826648B2
Provided is a display device equipped with a frame assembly that can prevent malfunction or failure of a control substrate attributable to internal heating and which has a simplified structure enabling easy production of a compact display device. The frame assembly includes: a first frame combined with a display panel; a second frame spaced from and combined with a rear surface of the first frame; and a third frame and a fourth frame that are combined with a rear surface of the second frame in a state in which the display panel is mounted. The first and second frames have respective openings, the third frame has a width larger than that of the fourth frame in a front-and-rear direction, and an upper portion of the display panel is inclined forward when the display device is installed such that the control substrate is vertically arranged.
US09826645B2
The present application provides a circuit substrate and a method of managing the placement of one or more groupings of a plurality of capacitors coupled to a circuit substrate. Each capacitor has a pair of terminals, as well as a component shape which changes as a voltage difference is selectively applied across the pair of terminals. When a voltage difference is applied across the pair of terminals, the component shape of the capacitor will contract in a first direction and expand in a second direction, where the second direction is substantially orthogonal to the first direction. When the voltage difference is removed from the pair of terminals, the component shape of the capacitor will return to an uncontracted state in the first direction and an unexpanded state in the second direction. Each of the plurality of capacitors in a particular grouping is driven by a complementary signal. The method includes arranging each of the plurality of capacitors in the particular grouping, which are positioned within a relative distance of one another that is less than or equal to a quarter wavelength of a predetermined frequency, where at least some of the plurality of capacitors in the particular grouping are positioned to exert opposite influences on the circuit substrate relative to other capacitors in the particular group, in response to the plurality of capacitors in the particular grouping being driven by the complementary signal.
US09826624B2
A display device includes: a panel substrate configured to display an image; a control printed circuit board to receive an image signal from an external source, to generate data and a control signal based on the image signal, and to provide the data and the control signal to the panel substrate; and a flexible printed circuit board (FPCB) electrically connected to the panel substrate and electrically connected to the control printed circuit board. A first align mark is disposed on the FPCB and a second align mark is disposed on the control printed circuit board.
US09826621B1
Systems and methods are provided for redirecting electromagnetic radiation around an object. A first assembly, including a first interior wall and a first exterior wall enclosing a propellant gas, substantially encloses the object. A first control system is configured to energize the propellant gas to provide a first volume of plasma and control an electron number density of the first volume of plasma. The electron number density of the first volume of plasma is selected to minimize reflection of the electromagnetic radiation from the first exterior wall. A second assembly includes a second interior wall and a second exterior wall enclosing a propellant gas and is substantially concentric with the first assembly and substantially encloses the object. A second control system is configured to energize the propellant gas to provide a second volume of plasma and control an electron number density of the second volume of plasma.
US09826620B2
A high frequency generating device used in a plasma ignition apparatus according to an embodiment includes a high frequency output unit, an output control unit, a current detecting unit, and an abnormality detecting unit. The high frequency output unit outputs a high frequency. The output control unit shifts a state of the high frequency output unit from a non-output state to an output-ready state of the high frequency. The current detecting unit detects a current that flows through a power-supply path to the high frequency output unit. The abnormality detecting unit detects output abnormality of the high frequency in the non-output state when a value of a current detected by the current detecting unit in the non-output state exceeds a non-output threshold.
US09826611B2
An ESD protection device includes: a first insulating layer (2a); a second insulating layer (2b) stacked on the first insulating layer (2a); a first via conductor (6a) extending through the first insulating layer (2a) in a thickness direction; a discharge gap portion (10) provided so as to be in contact with the first via conductor (6a), between the first insulating layer (2a) and the second insulating layer (2b); a first wiring line (7a) that is arranged on a surface of the first insulating layer (2a) opposite to the discharge gap portion (10) and that is electrically connected to the first via conductor (6a); and a second wiring line (7b) that is arranged on one surface of the second insulating layer (2b) and that includes a portion facing the first via conductor (6a) with at least the discharge gap portion (10) interposed therebetween.
US09826608B2
Provided is a standby current supplier including a bleeding circuit electrically connected to a dimmer and through which a first current flowing to the dimmer flows when the dimmer is in an off state, and a first controller configured to detect a first voltage corresponding to an input voltage generated by the dimmer and control the bleeding circuit based on the first voltage when the first voltage is lower than a predetermined first level.
US09826605B2
A system and method of controlling lighting schedules in a lighting control application on a computer system is disclosed. A graphical user interface is displayed to a user on a display in signal-communication with the computer system. The graphical user interface has a plurality of lighting control schedule areas. Each lighting control schedule area has an in-schedule portion and a corresponding out-of-schedule portion. One or more interface objects, corresponding to one or more lighting control devices, are associated with the in-schedule lighting control schedule of a first lighting control schedule area of the plurality of lighting control schedule areas without instructing the corresponding one or more lighting control devices to operate on said in-schedule lighting control schedule, in response to a user moving the one or more interface objects to the out-of-schedule portion of the first lighting control schedule area.
US09826596B2
Devices and methods for controlling brightness of a display backlight are provided. A display backlight controller may control the brightness of the display backlight by changing a duty cycle of a PWM signal that drives the LED current. However, because of LED efficacy and response time, the final output brightness (NITS) may not be linear between 0% to 100%. The disclosed methods may be used to correct the brightness using a predetermined correction factor. Further, the minimum and maximum duty cycle of the output dimming duty cycle may be limited or corrected. In one example, a backlight controller receives an input duty cycle and determines a product of the input duty cycle and a maximum duty cycle to produce a reduced duty cycle. Moreover, the backlight driver may determine a corrected duty cycle using the correction factor. The final output duty cycle and LED current may then be determined.
US09826583B1
An adjustable auxiliary power supply for a light emitting diode (LED) driver for adjusting an auxiliary power output includes a voltage regulator configured to receive a regulator input voltage and to output an auxiliary power supply voltage selected from a first output voltage and a second output voltage according to a voltage selection signal used to control an LED lighting setting. The adjustable auxiliary power supply includes a first and second input voltage circuits configured to selectively output respective first and second input voltages to the voltage regulator. The adjustable auxiliary power supply includes an adjustable resistance circuit coupled to the voltage regulator. The adjustable resistance circuit controls the auxiliary power supply voltage based upon an adjustable resistance setting of the adjustable resistance circuit. The adjustable resistance setting is configured to correspond to at least one of the first output voltage and the second output voltage.
US09826580B2
A backlight unit includes a light source; and a light-source driving unit configured to drive the light source and that includes a transformer. The transformer includes a core comprising a plurality of metal powders; and a plurality of coils embedded in the core. At least one coil has a diameter different from a diameter of another coil.
US09826575B2
An electrical raft assembly for a gas turbine engine is provided. The raft assembly comprises a rigid electrical raft formed of a rigid material that includes an electrical system comprising electrical conductors embedded in the rigid material. The raft assembly further comprises an engine component that is mounted to the electrical raft. The electrical raft includes one or more integral cooling passages which guide a coolant fluid through the raft to cool the engine component.
US09826568B2
A method for reducing data transmission delay is provided. The method includes: detecting whether a terminal has data sending or receiving, and determining whether a current network is idle; determining, if detecting that the terminal has no data sending or receiving, that the current network is idle, connecting and communicating with a server at a preset time interval, and maintaining the communication channel with the server. By the method, whether the network is idle is detected; when it is detected that the network is idle, connect and communicate with the server at a preset time interval, and maintain the communication channel with the server. This avoids the release of the channel due to idle network, and consequently avoids the need of re-establishing the channel when data transmission is enabled again, thereby reducing data transmission delay. Furthermore, a system for monitoring operation platform is also disclosed.
US09826556B2
An apparatus and a method are provided for data transmission and reception of a mobile terminal, which seamlessly provide data transmission and reception between the mobile terminal and a multipoint communication device. The method includes requesting, by the mobile terminal, data sharing from another mobile terminal, for sharing of data transmitted and received to and from the another mobile terminal; receiving approval of the request for the data sharing from the another mobile terminal; establishing a channel connection between the mobile terminal and a sharing device for the sharing of the data; and transmitting and receiving the data to and from the sharing device through the channel.
US09826551B2
A method and apparatus for coordinating access to a shared transmission medium in a Wireless Local Area Network (WLAN). The method includes initiating transmission of data from a first device to a second device in a first basic service set (BSS); and providing access opportunity to the first device on the shared transmission medium in one or more time slots, which time slots are assigned dependent on bandwidth of the data to be transmitted.
US09826550B2
A data communication method implemented by a sensor node of a telecommunications network including a plurality of sensor nodes and a concentrator node, which share a communication channel. The method includes: selecting a time interval in a contention window including a plurality of time intervals and preceding a transmission period including a plurality of transmission intervals; emitting a request signal during the selected time interval to the concentrator node; receiving a response signal carrying encoded information representing an ordered combination of the intervals marked during which the signals were received by the concentrator node; determining a transmission rank according to a number of intervals marked by the concentrator node; and deciding to emit data to the concentrator node in the transmission period when the transmission rank is lower than or equal to the number of intervals of the transmission period.
US09826549B2
A method for transmitting Machine to Machine (M2M) ranging information in a wireless communication system is disclosed. The method includes transmitting an Uplink Channel Descriptor (UCD) including an M2M ranging region Type/Length/Value (TLV). When the UCD is transmitted, a ranging region TLV identifying the same region as the M2M ranging region TLV is included in the UCD.
US09826548B2
Embodiments herein relate to a first station (STA1) and a method performed by a first station (STA1) for handling Request-to-Send/Clear-to-Send, RTS/CTS, transmissions in a wireless communications network (100). The first station (STA1) is served by a first access point (AP1) in a first Basic Service Set (BSS1). The first station (STA1) receives a RTS/CTS transmission relating to a second Basic Service Set (BSS2). Then, the first station (STA1) determine whether or not to set a Network Allocation Vector, NAV, according to the RTS/CTS transmission based on whether the RTS/CTS transmission was sent from a second station (STA2) or from a second access point (AP2) in the second Basic Service Set (BSS2).Embodiments herein also relate to a first access point (AP1) and a method performed by a first access point (AP1) for handling RTS/CTS transmissions in a wireless communications network (100).
US09826544B2
The present disclosure relates to a method for use in a wireless communication device reporting ACK or NACK in dynamic TDD configurations. In the method, an indication of a reference UL TDD configuration and a reference DL TDD configuration is indicated. Then, ACK or NACK bits with a fixed number of the ACK or NACK bits based on the reference DL TDD configuration are reported at a timing based on the reference DL TDD configuration. The present disclosure also relates to a wireless communication device for reporting ACK/NACK in dynamic TDD configurations.
US09826539B2
Embodiments of user equipment (UE), an enhanced node B (eNB), and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the UE receives configuration information for a D2D discovery resource pool of a cell. The configuration information includes an indication that the D2D discovery resource pool has been logically divided into a plurality of sub-discovery resource pools. The UE performs an initial transmission of a discovery signal in a discovery period using a single D2D discovery resource from a first sub-discovery resource pool of the plurality of sub-discovery resource pools. The UE performs a number of additional transmissions of the discovery signal in the discovery period using additional D2D discovery resources from sub-discovery resource pools of the plurality of sub-discovery resource pools other than the first sub-discovery resource pool. Other apparatuses and methods are also described.
US09826537B2
A system and method are described for adjusting communication with a first distributed-input-distributed-output (DIDO) client as the first DIDO client moves from a first DIDO cluster to a second DIDO cluster: For example, in one embodiment of the system and method, different signal strength thresholds are specified and either conventional DIDO precoding and/or DIDO precoding with inter-DIDO-cluster interference (IDCI) cancellation to avoid RF interference at the DIDO client are employed based on measured signal strengths from a main DIDO cluster and an interfering DIDO cluster.
US09826532B1
A method for transmitting a resource request for an orthogonal frequency division multiple access (OFDMA) transmission is described. A resource request field that indicates buffer information corresponding to queued media access control (MAC) protocol data units (MPDUs) that are queued for transmission by a first communication device is generated. The resource request field includes i) a scale factor subfield that indicates a scale value, and ii) a resource subfield that indicates a base resource value. A resource request MPDU including the resource request field is generated. The resource request MPDU is transmitted to a second communication device via a wireless communication channel to request an allocation of radio resources for the OFDMA transmission. The buffer information is i) a number of bytes indicated by the scale value multiplied by the base resource value, or ii) a transmission opportunity duration indicated by the scale value multiplied by the base resource value.
US09826528B2
Methods, systems, and devices are described for reconfiguring a user equipment (UE) to operate in a reconfigured TDD UL-DL configuration. An initial uplink-downlink (UL-DL) configuration for TDD communication may be provided for communication between an e Node B and a UE. One or more subframes within each frame transmitted using the initial UL-DL configuration may be identified as flexible subframes. The identification of flexible subframes may permit the identification of timing for HARQ transmissions that does not change when a reconfiguration takes place. A different UL-DL configuration may be transmitted to the UE, in which at least one flexible subframe is to be changed from an uplink subframe to a downlink subframe. The different UL-DL configuration may be transmitted by, for example, a pseudo-uplink grant to the UE, which indicates that the UE is to reconfigure one or more flexible subframes from uplink to downlink transmission.
US09826505B2
Multicasting in Multimedia Broadcast Multicast Service (MBMS) nodes and the respective nodes. The method in a node configured as an MBMS gateway includes, in response to receipt of a session start request message for a multicast session, allocating a transport network IPv4 multicast address and a transport network IPv6 multicast address for the session, and generating another session start request message and transmitting it to a node configured as a Mobility Management Element (MME). The session start request message includes a first pair of the allocated transport network IPv4 multicast address and an IPv4 multicast source address, and a second pair of the allocated transport network IPv6 multicast address and an IPv6 multicast source address. In response to receipt of MBMS data from a node configured as a Broadcast-Multicast Service Center (BM-SC), the MBMS data is sent using at least one of the first and second pair of addresses.
US09826500B1
Driving condition data is determined. The driving condition data identifies one or more driving actions that require more driver attention and one or more driving actions that require less driver attention. An indication is received that a user has a mobile device and is driving a vehicle. The surrounding environment of the vehicle is monitored. An incoming notification on the mobile device is received. A distraction value is determined. The distraction value is based on the one or more driving actions and the surrounding environment. The incoming notification is modified based on the distraction value.
US09826498B2
In a non-limiting and exemplary embodiment, a method is provided for arranging wireless communications, comprising: establishing, by an apparatus, a connection with an access point, detecting location of the access point, detecting accuracy of the detected location of the access point, and in response to detecting the detected location of the access point to be more accurate than an earlier stored location of the access point, updating the detected location to a location database of the apparatus.
US09826494B2
Disclosed are a method and an apparatus for transmitting D2D signals, wherein the method comprises: detecting a synchronization signal and/or a D2D signal, and determining a synchronization reference for sending or receiving other D2D signals based on the synchronization signal and/or the D2D signal; based on information carried in the detected synchronization signal and/or the D2D signal, determining a D2D resource configuration; and based on the determined synchronization reference for sending or receiving the other D2D signals and the determined D2D resource configuration, determining a resource position used for transmitting D2D signals, and sending or receiving the other D2D signals in the resource position. By enabling a UE to learn the D2D resource configuration based on the synchronization signal and/or the D2D signal, the present application prevents the UE from always using fixed resources when transmitting D2D signals, thus reducing mutual interference and improving transmission efficiency and quality.
US09826491B2
A method, apparatus, and computer program product are provided to enable the provision of a mechanism by which a device participating in a collaborative application may synchronize with other participating devices. A method may include providing for operation of a collaboration application, providing for transmission of a multicast reference time request to a wireless access point, receiving a multicast reference time message, establishing a reference time in response to receiving the reference time message, and synchronizing the collaboration application using the reference time. The synchronization of the collaboration application may be performed in response to receiving an acknowledgement message from collaborating devices. The method may further include providing for transmission of a second multicast reference time request in response to not receiving an acknowledgement message from the collaborating devices. The multicast reference time message may be received from the wireless access point.
US09826475B1
A mobile terminal device can be used in a network system including a first network and a second network. Plural access points are connected to the first network. A common identification name is set to the plural access points. An access point having a coverage area overlapping with a part of a coverage area of the first network is connected to the second network. The mobile terminal device includes a detector, an execution unit, an acquiring unit, a connection controller, and a setting unit. The detector detects connectable access points. The execution unit executes an application which uses a network device connected to the first or second network. The acquiring unit acquires, from a history information memory, history information including (i) device identification information unique to the network device used when the application is executed in past, and (ii) device identification information unique to an access point.
US09826474B2
Methods, apparatus and program products are disclosed for allowing wireless devices in two wireless access networks whose coverage areas overlap to communicate with their respective access nodes. Groups may be assigned to wireless devices in the access networks and the groups may be used by wireless devices in the access networks to determine whether to access a communication medium or not. Received powers may also be used by wireless devices in the access networks to determine whether or not to access a communication medium. A wireless device in a first access network can determine whether to access (e.g., compete for access to) the communication medium by comparing a measured power of transmission from a second access node with an indication of a minimum received power above which wireless devices in a second access network formed by a second access node are allowed to contend for access to the communication medium.
US09826465B2
The application relates to the integration of WLAN access networks into cellular communication networks, often referred to as “Non-3GPP Access” in 3GPP standardization, in particular TS 23.402. Location information, such as SSID, WLAN access point name, WLAN access point identifier, WLAN access point MAC address is currently not available for GTP based S2a nor GTP based S2b, and neither for the Gn interface nor for PMIPv6 based S2a. However, Location information is needed in the PGW/GGSN for multiple purposes, e.g. for policy enforcement, charging and lawful interception. This problem is solved by the application in that the missing information is included in a protocol message of the cellular communications system, in particular a GTPv1, GTPv2 or PMIPv6 signalling message, and communicated (S2) to the cellular communications system. Furthermore, an event trigger, similar to event triggers on the Gx interface which may be set by the PCRF, may be set by the PCRF/OCS in the WLAN (S4, S5) to request up-to-date location information (S6, S7, S8).
US09826464B2
The subject matter described herein includes managing access conditions and determining which access point to use by a wireless device based on terms and conditions (TCs) for allowing access (TCsAA) and terms and conditions for utilizing access (TCsUA) provided and updated by various parties in a system for alternative network access provision (ANAPS) comprising of a cloud based server system and a wireless device and its connection manager software system. The TCs may depend on a number of variables including one or more of the following: price, availability, relative signal strengths and communication speeds of different cellular base pay and or access points and connections through the stations or access points to the Internet or other backend systems, the location and possible motion of the device, the time of day, week, month or year as well as the cost of communication alternatives.
US09826456B2
The present invention relates to a method and a device for effectively controlling a handover of a user equipment (UE) in a long connected mode. A method for controlling a handover by an eNB, according to one embodiment of the present invention, comprises the steps of: checking whether a UE is in a long connected mode; and transmitting, to the UE, channel measurement configuration information of which a channel measurement report trigger condition is alleviated compared with a normal connected mode.
US09826453B2
A system and method manages call connections between mobile subscribers and an EP-based wireless telecommunications network through a wireless access point. Communications between the mobile subscribers and the IP-based wireless telecommunications network are initiated by a registration request. During the registration request various identifiers (IMSI, MAC address, IP Address, etc.) are communicated to the system. The system is arranged to log the identifiers and associate those identifiers with the entry point (e.g., the wireless access point) into the IP based wireless network. Call connections from the mobile subscribers are monitored for various throughput and call quality based metrics. Call handoffs between the IP-based wireless communications network and the cellular telephony network are managed by the system based on the monitored call quality and throughput metrics on a per-access point basis using the registered identifiers.
US09826450B2
The present application discloses a method for supporting a selected IP traffic offload (SIPTO) by a mobility management entity (MME) when a user equipment (UE) handovers from a source base station to a target base station in a mobile communication system. The method includes acquiring a local home network identifier (ID) of the source base station, acquiring a local home network ID of the target base station from the target base station, and determining whether the UE has moved out of the local home network of the source base station according to the local home network ID of the source base station and the local home network ID of the target base station.
US09826439B2
Structures and protocols are presented for using or otherwise relating to a first mobile device (a smartphone or tablet computer or wearable device, e.g.) configured to be shared by two or more parties such that a subset of the parties may be addressed selectively (in content directed to such parties, e.g.) in a cost-effective manner.
US09826437B2
The invention relates to a method for relocating a first function for processing data packets of a flow associated with a device, from a source to a target instance. The method is triggered by an initiated relocation of a second function for processing data packets of the flow. The method comprises initiating (710) a first phase of a relocation method for relocating the first function, before the relocation of the second function is finalized. The method also comprises determining (720) whether to initiate a second phase of the relocation method based on information related to a progress of the relocation of the second function. When it is determined (720) to initiate the second phase, the method further comprises initiating (730) the second phase of the relocation method comprising the resumption of the processing of the data packets of the flow at the target instance of the first function.
US09826425B2
The present invention relates to a method for transmitting channel state information of a terminal in a multi-carrier system, and to a terminal using the method. The method comprises the steps of: receiving reference signals from a base station via a plurality of downlink component carriers; measuring a channel state for each of the plurality of downlink component carriers using the reference signals included in the plurality of downlink component carriers; generating channel state information on a portion of the plurality of downlink component carriers; and transmitting to the base station the channel state information on a portion of the plurality of downlink component carriers and/or an index which indicates the portion of the plurality of downlink component carriers.
US09826421B2
In order to set optimal wireless parameters, a wireless base station includes: a wireless parameter control unit (402) configured to determine whether it is necessary to perform wireless parameter optimization in an own wireless base station; and a determination unit (404) configured to determine whether another wireless base station performs wireless parameter optimization in the another wireless base station when the wireless parameter control unit determines that it is necessary to perform the wireless parameter optimization. The wireless parameter control unit (402) performs wireless parameter optimization in the own wireless base station when the determination unit determines that the another wireless base station does not perform wireless parameter optimization in the another wireless base station. The wireless parameter control unit cancels to perform wireless parameter optimization in the own wireless base station when the determination unit determines that the another wireless base station performs wireless parameter optimization in the another wireless base station.
US09826420B2
Optimizing a plurality of cell sites or sectors in a wireless network including receiving network data regarding a plurality of cell sites or sectors; determining a critical zone in which communication is degraded; determining best neighbor cell sites or sectors among the neighbor cell sites or sectors associated with the critical cell sites or sectors; determining if the critical cell sites or sectors in the critical zone have available resources for achieving a desired improvement in communications; determining if the best neighbor cell sites or sectors have available resources for achieving the desired improvement in communications; and altering wireless network parameters of the critical cell sites or sectors, or the best neighbor cell sites or sectors for achieving the desired improvement in communications. Altering wireless network parameters of the critical cell sites or sectors, or the best neighbor cell sites or sectors is performed continuously until the desired improvement in communications in the wireless network is achieved.
US09826418B2
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Time of Flight (ToF) measurement. For example, a first wireless device may include a controller to perform a Time of Flight (ToF) measurement procedure with a second wireless device; and a radio to communicate with the second wireless device a ToF frame including a first time value of a Time Synchronization Function (TSF) of a sender of the frame to indicate a beginning time of a ToF measurement period, and a second time value of the TSF at transmission of the ToF frame.
US09826408B2
A method is provided in one example embodiment and may include determining for each of one or more macro cell radios, a corresponding set of one or more small cell radios that are under a coverage area of each of the one or more macro cell radios, wherein each corresponding set is associated with a corresponding macro cell radio; calculating interference coordination parameters for each small cell radio belonging to each corresponding set, wherein the interference coordination parameters for each small cell radio belonging to each corresponding set comprises an uplink interference budget for each small cell radio; and communicating the interference coordination parameters to each small cell radio belonging to each corresponding set.
US09826407B2
Methods and systems disclosed herein relate to determining a projected change in bandwidth demand in a specified area during a specified future time period, repositioning one or more balloons in a high-altitude balloon network based on the projected change in bandwidth demand, and providing, using the one or more balloons, at least a portion of the bandwidth demanded in the specified area during the specified future time period.
US09826403B2
A device receives a request from a user to manage a Mobile Network Operator (MNO) profile stored in a smart card within the device, wherein the MNO profile includes one or more network access credentials for accessing a wireless network. The device performs a Completely Automated Public Turing Test to tell Computers and Humans Apart (CAPTCHA), wherein the CAPTCHA includes receiving input from the user, and authenticates the user as a human, and not a bot or other automated activity, based on the CAPTCHA and the input from the user. The device receives, from a network node external to the device responsive to the authenticating, a MNO profile management code, and manages the MNO profile based on the received MNO profile management code.
US09826393B2
A mobile data network supports making subscriber data addressable as devices in a mobile data network. Each data chunk is assigned a device address in the mobile data network. The data chunk can then be addressed as a device in the mobile data network. Data chunks corresponding to a subscriber are distributed across multiple devices in the mobile data network, which may include subscriber devices, network components in the mobile data network, and specialized devices provided by storage providers. The mobile data network is queried to determine related devices. An ad-hoc network of the related devices is formed. A data query by one of the related devices is sent to the related devices in the ad-hoc network to determine whether the data query can be satisfied by one of the related devices. If not, the data query is sent via normal channels in the mobile data network.
US09826392B2
Management of subscriber identity modules is disclosed. A server apparatus manages, in addition to or instead of mobile network operators, by a service provider, subscriptions to wireless communication networks. The server apparatus maintains subscriber identity module-specific usage records. Each usage record comprises a quantity quantifying amount of data transferred with each subscriber identity module and a limit setting the maximum allowed amount of data transfer for each subscriber identity module. The server apparatus compares periodically the quantity in each usage record with the limit in the same usage record, and if the quantity in the usage record is within a predetermined margin of the limit in the same usage record, transmits, with the data communication interface, to the mobile apparatus, a command to limit data transfer speed of the subscriber identity module defined by the usage record.
US09826391B2
In embodiments, apparatuses, methods, and storage media may be described for allocating radio resources to a user equipment (UE) for device to device (D2D) transmission. Specifically, the UE may be configured to predict cellular interference to one or more cellular transmissions in a cell that may be caused by the transmission of a D2D signal. Based on that predicted interference, the UE may identify one or more radio resources in for the D2D transmission.
US09826381B2
Systems, methods, and apparatuses for inter-device communication in wireless communication systems are provided. A user equipment (UE) may initiate a direct inter-device communication link between UEs located in proximity. The UEs participating in the inter-device communications may perform a device handshake procedure or a device discovery procedure to set up appropriate transmission parameters for the communication over the inter-device communication link. A device-to-device radio network temporary identification (DD-RNTI) may be used for the inter-device communication link. Long term evolution (LTE) downlink or uplink radio resources may be used for communications over the inter-device communication link.
US09826380B1
The techniques for metering Video over LTE (ViLTE) data usage may ensure data consumption by subscribers are in line with their recurring service plans. A request to establish a video bearer between a mobile telecommunication network and a user device for a multimedia call may be received at a policy engine of a mobile telecommunication network. Subsequently, information that indicates a connection type used by the user device to connect to the mobile telecommunication network may be retrieved from a gateway of the network. The video bearer for a video over wireless local area network call of the user device may be established without ViLTE data usage metering in response to the user device having a WLAN connection type. However, the video bearer for a ViLTE call may be established with ViLTE data usage metering in response to the user device having a LTE connection type.
US09826367B2
The application relates to a wireless rotating instrumentation package for collecting data from a spinning rotor head of a rotary wing aircraft. The application also relates to a method of wirelessly collecting data from a spinning rotor head of a rotary wing aircraft.
US09826361B2
A RF based mobile positioning system determines mobile device positioning by count stamped packets communicated between the mobile device and access points according to a standard wifi protocol. Ad-hoc groups of wifi network nodes are formed and then broken with a mobile device as that mobile devices moves relative to fixed nodes, such as access points. Within an ad-hoc group, the nodes count stamp packets by latching a local counter within each node. Count-stamps are collected and used to generate ranges for a mobile device relative to nodes in an ad hoc group. A positioning services determines the position of the mobile device from the ranges.
US09826357B2
A mobile device having location services stores information pertaining to a geo-fence assigned to a building and stores a geo-fence log including one or more mobile device parameters and one or more geo-fence crossing events. The mobile device may determine the location of the mobile device via the location services and may determine when a geo-fence crossing event has occurred. Each of the geo-fence crossing events may be recorded in the geo-fence log, which may be uploaded to a remote server from time to time.
US09826349B1
A method and device may estimate the accuracy of position data using kernel density estimator. The method may include receiving, from a plurality of user devices, network requests having embedded position data representing locations of the plurality of user devices. The method further includes extracting, from the network requests over a time period, the embedded position data of a user device associated with the plurality of user devices; and receiving baseline position data representing the locations of the user device over the time period. The method included generating a probability density estimate of the locations of the user device based on a kernel density estimator using the baseline position data, determining accuracy scores for the embedded position data using the probability density estimate of the locations, and filtering the embedded position data to remove outliers from the embedded position data.
US09826345B2
An approach is provided for detecting points of interest or events based on geotagged data and geolocation seeds. A maps platform processes and/or facilitates a processing of location information associated with one or more devices to determine one or more geolocation seeds. The maps platform causes, at least in part, a querying for content information based, at least in part, on the one or more geolocation seeds. The maps platform then processes and/or facilitates a processing of the content information to determine one or more points of interest, one or more location-based events, or a combination thereof.
US09826344B2
Systems and methods for determining whether a mobile device was within a specified area and for providing a location history of a mobile device are disclosed. A request may be received from a device which inquires about the location history of a mobile device. The request may include a time period and/or a location. The relevant location history of the device may be determined and provided in response. A request may also be received which inquires whether a mobile device was within a known alert area. The location history of the device may be correlated to the alert area and a response provided.
US09826343B2
The present invention is related to a method and an apparatus for transmitting and receiving activity data of a user through Bluetooth LE (Low Energy) in a wireless communication system. A method according to the present invention comprises transmitting an advertising message indicating support of a measurement service for a user's activity to a second device; receiving a first request message requesting measurement of a specific activity of the user from the second device; transmitting a first response message to the second device in response to the first request message, when the specific activity is supported by the first device; and measuring the specific activity, wherein the first request message includes activity type indicating type of the specific activity.
US09826340B2
A method for transmitting data in an electronic device is disclosed. The electronic device includes a short-range communication unit, and a controller The controller may implement the method including controlling a priority scheme of two or more other electronic devices which are paired with the electronic device, and when an event occurs, transmitting data regarding the event to at least one of the other electronic devices based on the priority scheme.
US09826339B2
In one embodiment, a system includes a first tracked device and a second tracked device. The first tracked device includes first known device data, describing one or more previous connections known to the first tracked device. The second tracked device includes second known device data, describing one or more previous connections known to the second tracked device. The first tracked device is configured to connect to the second tracked device, transfer to the second tracked device at least a portion of the first known device data, and receive from the second tracked device at least a portion of the second known device data. The first tracked device is further configured to modify the first known device data to incorporate the second known device data. The second known device data includes data related to a previous connection involving a third tracked device outside a signal range of the first tracked device.
US09826338B2
Disclosed is an IoT-based system for overseeing process control and predictive maintenance of a machine or a network of machines by employing machine wearable sensors. The system comprises a plurality of IR temperature sensors, each of which secured to the exterior of the machine; each IR sensor capable of transmitting captured temperature data wirelessly over a communications network, an algorithm engine capable of receiving data from the IR sensors, the algorithm engine for further processing the received data to recognize real-time temperature patterns, deviations, etc., and based on the same issuing control commands pertaining to the machine, and one or more control modules disposed in operative communication with the control panel of the machine, the control module capable of receiving, over a communications network, the control commands and executing the same resulting in accomplishing process control or predictive maintenance of the machine or both.
US09826337B2
A method and system for transmitting information which is obtained from a peripheral object when an interactive service between devices is performed, and a device, are provided. The information transmission method includes: obtaining first information which is stored in a peripheral object of an electronic device via short distance communication with the peripheral object when an interactive service is performed between the electronic device and the at least one external device; generating second information that is to be transmitted to the at least one external device based on the obtained first information; and transmitting the second information to the at least one external device via the interactive service.
US09826332B2
A centralized master device receives audio, down-mixes the audio to stereo if it is not already in stereo, and then up-mixes (renders) the stereo into as many channels as there speakers in the network. The up-mixing can be based on the number and locations of the speakers, which may be determined automatically using a real time location system such as ultra wide band (UWB) location determination techniques. The master device sends each speaker its respective channel.
US09826322B2
Securing mechanisms for space access devices, such as an audio signal transmitting device, include a plurality of outwardly projecting members that are configured to transition from a relaxed state to a securing state when the space access device is inserted into an internal space or opening that has an inside diameter smaller than an outside diameter of the outwardly projecting members in the relaxed state. The outwardly projecting members securely engage a surface of the internals space, conform to the shape and size of the internal space, and modulate at least one of the attenuation and frequency of audio signals and/or differentially acoustically impede audio signals transmitted through the securing mechanism and/or internal space and the space access device, without fully occluding the internal space.
US09826320B2
A method for receiving wireless audio streams in a hearing device includes: receiving audio packages of a primary audio stream from a primary transmitter unit having a primary transmitter unit address; evaluating a first parameter of the primary audio stream; and if the first parameter fulfills a search criterion: searching for pilot packages from available transmitter units; determining an optimum transmitter unit based on one or more pilot package parameters of the pilot packages from the available transmitter units; and receiving audio packages of an audio stream from the optimum transmitter unit.
US09826315B2
There are provided an acoustic generator, an acoustic generation device, and an electronic apparatus capable of enhancing sound pressure and sound quality. An acoustic generator includes a piezoelectric element having a surface electrode; a vibration body to which the piezoelectric element is attached; and a wiring member extending in one direction, having a flat shape, wherein one end portion in the one direction of the wiring member is connected to the surface electrode, and the wiring member is provided with a slit formed in a side of the wiring member which extends in the one direction from the one end portion of the wiring member.
US09826314B2
An electronic apparatus comprises a cover panel, a piezoelectric vibration element located on a rear surface being opposite to an exposed surface of the cover panel, and a drive module driving the piezoelectric vibration element based on a sound signal. The rear surface comprises a first region where the piezoelectric vibration element is disposed. The first region is located closer to a side of the exposed surface than a second region in the rear surface.
US09826308B2
A common plate is formed in a moveable element of a device, the device having an actuator coupled to drive the moveable element. A first plate and the common plate together form a first capacitance, while a second plate and the common plate together form a second capacitance, both of which varies as a function of displacement of the moveable element. A measurement circuit has an input coupled to the first plate, while an excitation voltage source has an output coupled to the second plate. A guard voltage source has an output coupled to a conductive portion of the device. Other embodiments are also described and claimed.
US09826300B2
An earphone device includes a housing having a driver unit, and a sound guide tube mounted on a front surface of the housing to protrude from the front surface, in which the sound guide tube is disposed at a position deviated from a center position of the housing.
US09826294B2
A loudspeaker controller (1) for controlling a loudspeaker (2), configured to determine time-varying impedance information of the loudspeaker (2) based on a loudspeaker voltage and a measure of a loudspeaker current and provide for control of the loudspeaker (2) in accordance with said time-varying impedance information.
US09826289B2
A wireless sensor system includes a telemeter and at least one sensor. The sensor and the telemeter switch between a digital communication mode and an analog sensing mode, where the digital communication mode is used for finding and activating a target sensor on basis of whether or not a target address coding matches with a preset address coding, the analog sensing mode is used for transmitting an analog sensing signal of the target sensor to extract a to-be-extracted sensitive variable, remaining sensors are in a standby state and do not reflect a sensing signal, and only an address coding used for a chip select of sensors.
US09826281B2
A media processing method, device, and system where one or more media receiving clients that have a media processing capability of one or more media playback devices are separately constructed for multiple communications protocols, to-be-played media data that is sent by a media source device and that is to be played by a media receiving client specified by the media source device is received, and the to-be-played media data is sent to a media playback device that is corresponding to the specified media receiving client, for the media playback device to play. Therefore multiple media playback devices may be connected flexibly and simultaneously and a media playback device may be switched as desired during media playback.
US09826270B2
Systems and methods utilize a content receiver to provide supplemental content, such as news content, personal content and advertising content, to a user. Received data is formatted as supplemental content by the content receiver based on user preference information stored therein, and the formatted supplemental content is transmitted to a content display device. The supplemental content is provided to the user in addition or as an alternative to video content, and may replace or supplement closed captioning content. The supplemental content may be translated into another language and/or converted into audio signals utilizing the content receiver. Systems and methods also utilize a content receiver to translate data such as text data into another language. Text data may, in addition or alternatively, be converted into audio signals utilizing the content receiver.
US09826253B2
Provided are entropy encoding and entropy decoding for video encoding and decoding.The video entropy decoding method includes: determining a bin string and a bin index for a maximum coding unit that is obtained from a bitstream; determining a value of a syntax element by comparing the determined bin string with bin strings that is assignable to the syntax element in the bin index; storing context variables for the maximum coding unit when the syntax element is a last syntax element in the maximum coding unit, a dependent slice segment is includable in a picture in which the maximum coding unit is included, and the maximum coding unit is a last maximum coding unit in a slice segment; and restoring symbols of the maximum coding unit by using the determined value of the syntax element.
US09826245B2
An image encoding format includes a profile indicating a combination of processes which an image decoding apparatus is capable of decoding and a level indicating a range of a parameter which the image decoding apparatus is capable of decoding. The image decoding apparatus includes a decoding unit that decodes the image encoding format on the basis of a code that indicates whether parallel processing of the decoding processes in each tile is enabled depending on the profile.
US09826242B2
In an example, a method of coding video data includes determining, by a video coder and for a block of video data, a palette having a plurality of entries indicating a plurality of respective color values, wherein a first line of the block of video data includes a pixel located adjacent to an edge of the block of video data, and wherein a second line of the block of video data includes a pixel located adjacent to the edge of the block and adjacent to the pixel of the first line. In this example, the method also includes coding, in a scan order, index values that map pixels of the block to entries in the palette, wherein the pixel of the second line immediately follows the pixel of the first line in the scan order.
US09826232B2
An apparatus configured to decode video information includes a memory and a processor in communication with the memory. The memory is configured to store video information associated with a bitstream. The apparatus further includes a processor in communication with the memory, the processor configured to determine that a reference layer is not included in the bitstream. The processor is further configured to receive, from an external source, a decoded base layer picture associated with an access unit, to store the decoded base layer picture in a memory. The processor is further configured to decode pictures associated with the access unit based on the stored decoded base layer picture, and subsequent to decoding the pictures associated with the access unit, empty the decoded base layer picture from the memory.
US09826231B2
A video coding or decoding method in which luminance and chrominance samples are predicted from other respective reference samples according to a prediction direction associated with a current sample to be predicted, the chrominance samples having a lower horizontal and/or vertical sampling rate than the luminance samples so that the ratio of luminance horizontal resolution to chrominance horizontal resolution is different than the ratio of luminance vertical resolution to chrominance vertical resolution, so that a block of luminance samples has a different aspect ratio to a corresponding block of chrominance samples, the method including: detecting a first prediction direction defined in relation to a first grid of a first aspect ratio in respect of a set of current samples to be predicted; and applying a direction mapping to the prediction direction to generate a second prediction direction defined in relation to a second grid of a different aspect ratio.
US09826226B2
An image sensor of a camera configured with a diffraction grating is used to capture a diffraction image of an image rendering surface of a display device, for example, while a target image is being rendered on the image rendering surface of the display device. The diffraction image of the image rendering surface of the display device is analyzed to obtain measurements of native display capabilities of the display device. Display capability data is transmitted to a display management module for the display device. At least a portion of the display capability data is generated from the measurements of native display capabilities of the display device that are obtained from analyzing the diffraction image of the image rendering surface of the display device.
US09826209B2
A medical system includes a first storage that stores image information on an image that is obtained by an imaging device capturing an image of a reference subject and on which image processing is performed by a first processing device, a second storage that stores image information on an image that is obtained by the imaging device capturing an image of the reference subject and on which image processing is performed by a second processing device, a comparison unit that compares the image information stored in the first storage with the image information stored in the second storage, and a setting changing unit that changes an image processing setting of the second processing device on the basis of a result of the comparison, such that the image information stored in the second storage is identical or substantially identical to the image information stored in the first storage.
US09826208B2
Embodiments of the present invention are operable to generate a set of weights derived through crowdsourcing procedures for use in automatically performing white balancing operations on images captured by a digital camera system. Embodiments of the present invention are operable to generate a set of images which are illuminated with known and different illuminants. Using crowdsourcing procedures, embodiments of the present invention gather user feedback concerning which images from the set of images adjusted by the known illuminants are considered to be the most aesthetically pleasing. Images selected by the users are then stored within a database of selected images. Using a learning engine, embodiments of the present invention may then produce a set of weights based on the user selected images for use in determining a likely illuminant when performing automatic white balancing operations performed on the camera system.
US09826203B2
The present invention concerns a method for controlling a laser-based lighting system comprising a scanning mirror arrangement, arranged to be rotatable around two substantially orthogonal axes. The method comprises: (a) a sensor capturing a first image; (b) the sensor sending data representing at least part of the first image to an image generation unit; (c) the image generation unit generating a second image based on the data representing at least part of the first image, wherein the generated second image comprises information representing a feature region in the first image; (d) the image generation unit sending the second image to a projection system controller; and (e) the projection system controller, based on the received second image, controlling the operation of a projection system comprising a laser light source; and a scanning mirror arrangement for receiving the light radiated by the laser light source, and for reflecting the received light to a wavelength conversion element to project the second image. In the method the second image is streamed to the projection controller as an image pixel stream without first saving it in a memory.
US09826199B2
Various driver assistance systems mountable in a host vehicle and computerized methods for detecting a vertical deviation of a road surface. The driver assistance system includes a camera operatively connectible to a processor. Multiple consecutive image frames are captured from the camera including a first image of the road and a second image of the road. Based on the host vehicle motion, the second image is warped toward the first image to produce thereby a warped second image. Image points of the road in the first image and corresponding image points of the road in the warped second image are tracked. Optical flow is computed between the warped second image to the first image. The optical flow is compared with an optical flow based on a road surface model to produce a residual optical flow. The vertical deviation is computed from the residual optical flow.
US09826198B2
A biological imaging device comprising: an irradiation unit which emits parallel light onto a first part in a living body; and an imaging unit which takes images of the first part and a second part that is connected to the first site.
US09826197B2
A client device receives a broadcast content signal containing an interactive identifier over a managed network at a client device. The interactive identifier may be a trigger that is included in a header or embedded within the digital video data. The trigger may have a temporal component, wherein the trigger can expire after a certain period of time. In response to identification of the trigger, the client device sends a user request for interactive content over an unmanaged network. For example, the managed network may be a one-way satellite television network, IP-television network or cable television network and the unmanaged network may be the Internet. The client device switches between receiving data from the managed network to receiving data from the unmanaged network.
US09826195B1
A method to extend the downstream and upstream data carrying capability of an HFC CATV system. At the neighborhood level, the CATV cable (the primary channel) is divided into different segments connected by electrically active junctions. At the junctions, each segment is also connected to a secondary data channel, such as an optical fiber or ultrahigh RF frequency (1 GHz+) secondary channel, which can carry supplemental downstream narrowcast channels and upstream channels between a plurality of such CATV cable segments. At the junctions, some CATV primary channel RF signals such as broadcast channels are passed without interference, while certain primary channel downstream narrowcast RF channels and upstream narrowcast RF channels are precisely suppressed using adaptive cancelling methods. Such adaptive cancellation methods are superior to prior art lowpass, highpass, and bandpass filtering methods because they allow for more efficient use of limited CATV primary channel RF spectrum.
US09826182B2
Techniques for controlling a stability of response of a semi-conductor matrix imager composed of pixels, including a first phase of characterizing the stability of the pixels and a second phase of correcting the signals arising from the pixels during the measurements. The pixels are classed into stable pixels and unstable pixels according to a predetermined criterion, the unstable pixels being associated individually with a stable pixel whose characteristics serve as base for correcting signals arising from the unstable pixels.
US09826175B2
Provided is an image pickup apparatus capable of reading out and outputting pixel data of a partial area of a rolling shutter type image sensor. The image pickup apparatus includes: a readout condition setter setting a readout condition for pixel data readout control from the image sensor; a charge time setter setting charge time of the image sensor; a skip setter setting, based on the readout condition, areas in which processing concerning one of readout and charge in an image pickup area of the image sensor is skipped; a controller controlling a charge of the image sensor and readout from the image sensor so as to achieve constant charge time of the image sensor within one frame based on the charge time and the areas set by the skip setter; and an image signal output unit outputting a pixel signal read out by the controller.
US09826162B2
A method and an apparatus for restoring a motion blurred image are disclosed. The method of restoring a motion blurred image comprises calculating a motion trajectory and a project trajectory of a camera using an embedded sensor; estimating a point spread function according to camera motion by using the motion trajectory and the project trajectory; and restoring the motion blurred image using the estimated point spread function and a spatially variant activity map.
US09826157B2
A camera for capturing video images in a series of frames includes an image sensor having an array of pixels. Each pixel receives an image and accumulates an electrical charge representative of the image during a frame. The camera also includes a pixel processor to sample a pixel output for each of the pixels of the image sensor during an intermediate portion of the frame to produce a signal representative of the image.
US09826153B2
An optical system that images a scene at two different fields of view, with switching between fields of view enabled by switchable mirrored surface is disclosed. A voltage change across the switchable mirror element generates a change in the reflection and transmission properties of the element, such that the element switches between a mirror state and a lens state. When nested in an annular reflective optic system of a given field of view, the switching element enables the opening of an additional optical path through the center of the reflective optics where a set of refractive optics are assembled into an imaging system for a second field of view. This dual field-of-view system changes field of view with no mechanical movement.
US09826142B2
An image pickup apparatus, including: a compression unit configured to perform compression processing on image data; an expansion unit configured to perform expansion processing on the image data that has been subjected to the compression processing based on a coding parameter used for the compression processing on the image data; and a processing unit configured to perform autofocus processing based on the image data that has been subjected to the expansion processing, the autofocus processing being adaptively performed based on the coding parameter.
US09826141B2
An imaging apparatus includes a shooting lens having a focus lens for adjusting a degree of focus on an imaging plane; an image sensor converting an optical image of a photographic subject to an electric image signal and outputting it; a confirmation image creator creating a focus state confirmation image in which a part, or a whole of an image expressed by the image signal is enlarged; a display displaying the focus state confirmation image; and a focus evaluation value calculator calculating a focus evaluation value based on the image signal; wherein when a state of an inclination of change in a focus evaluation value calculated at a plurality of positions of the focus lens while moving the focus lens is different from a state of an inclination of change in a focus evaluation value calculated immediately before, the focus state confirmation image is displayed on the display.
US09826138B1
Multiple cameras may be controlled over a wide area network in a routine that includes aggregating video processing capabilities of the cameras into a first graphics processing unit resource pool. The first graphics processing unit resource pool is operated on raw video feeds of the cameras to combine and transform the raw video feeds into a virtual video feed, wherein at least one camera of the cameras processes a raw video feed output by a different camera of the cameras. The virtual video feed is communicated over the wide area network to a master video processor, which is operated in a feedback loop to analyze the virtual video feed and control the first graphics processing unit resource pool to improve one of a quality or a content of the virtual video feed.
US09826137B2
An imaging apparatus which communicates with an external apparatus via a network, includes an imaging unit; a first image processing unit configured to change, by image processing, a brightness of a captured image output from the imaging unit; a second image processing unit configured to change, by image processing that is different from the image processing by the first image processing unit, a brightness of a captured image output from the imaging unit; a receiving unit configured to receive, from the external apparatus, a single command in which first image processing information for controlling an operation of the first image processing unit and second image processing information for controlling an operation of the second image processing unit may be described; and a control unit configured to control the first image processing unit and the second image processing unit in accordance with the command received by the receiving unit.
US09826135B2
[Object] To provide an information processing method, a control device, a recording device, an information processing system and a program which enable automatic control of a response sound of a recording device, with respect to an operation ordered by the control device.[Solution] Provided is an information processing method and an information processing system including establishing a connection, by a recording device, to a control device via communication, and determining a control mode of a response sound in the recording device with respect to an operation ordered by the control device depending on whether a plurality of recording devices are connected to the control device.
US09826132B2
An array imaging module includes a molded photosensitive assembly which includes a supporting member, at least a circuit board, at least two photosensitive units, at least two lead wires, and a mold sealer. The photosensitive units are coupled at the chip coupling area of the circuit board. The lead wires are electrically connected the photosensitive units at the chip coupling area of the circuit board. The mold sealer includes a main mold body and has two optical windows. When the main mold body is formed, the lead wires, the circuit board and the photosensitive units are sealed and molded by the main mold body of the mold sealer, such that after the main mold body is formed, the main mold body and at least a portion of the circuit board are integrally formed together at a position that the photosensitive units are aligned with the optical windows respectively.
US09826126B2
The invention relates to a reproduction device (21), with a device (20) acting as a source of digital services. It also relates to a method of synchronizing two parts of a digital service in a system including a source device according to the invention and at least one reproduction device according to the invention.According to the invention, the reproduction device (21) includes means for receiving the data forming at least a part of a digital service originating from a digital service source device (20), means for processing (210) at least some of the data received, means (211) for reproducing an output of at least a part of the digital service, the time for processing and reproducing the data introducing a delay in the output of the reproduced data. This device also includes communication means (213) for informing the source device of the delay introduced.
US09826123B2
An information processing system includes a plurality of data processing apparatuses and an information processing apparatus. The information processing apparatus includes a first generation unit configured to generate first identification information, a first storage processing unit configured to store the first identification information, a first reception unit configured to receive second identification information, a first transmission unit configured to add the second identification information, thereby transmitting the first data, and a second storage processing unit configured to store an execution information item. The data processing apparatus includes a second reception unit configured to receive the first data, a second generation unit configured to generate the second identification information, an execution unit configured to perform the process on the first data, and a second transmission unit configured to transmit the first identification information with the execution information item to the information processing apparatus.
US09826112B2
Systems and methods for identifying the health status of one or more printing devices are provided. An example method can involve determining one or more printing-device error parameters. The method may also involve determining one or more error intervals based on the one or more printing-device error parameters. The method may also involve generating an error frequency code based on the determined error intervals. Still further, the method may involve determining a health value based on the error frequency code. The method yet further includes performing a managing action based on the determined health value.
US09826109B2
A method and system for distributing documents comprises submitting a print job via a print client to a server. The document creator can submit a list of recipients to whom a hard copy document should be made available. This limits the distribution of the document to those persons included on the list. The method and system further comprises storing the print job in a queue associated with the server, transmitting the print job to a specified printer when one of at least one recipient requests rendering of the print job, and rendering the print job at the specified printer for one of the at least one recipients.
US09826092B2
A method for providing messages to a user during a call includes receiving a call from a user. The method may further include retrieving, based on the call, a unique identifier of the user, and placing the user in a call queue in an order defined by when the call is received. While the user is in the call queue, user data matching the unique identifier of the user is retrieved, the user data is analyzed to identify, based on the prior interaction, a problem of the user with the software application. The method may further include generating, in response to identifying the problem of the user, user data messages, and initiating presentation of the user data messages to the user while the user is in the call queue.
US09826084B2
A portable device control apparatus including a communication unit configured to detect at least a first portable device in a passenger compartment of a vehicle; and a processor configured to select at least one function of the first portable device to be deactivated based on the first portable device being located within a predetermined limit region including at least part of the driving seat of the vehicle, and transmit a command for deactivating an execution of at least one function to the first portable device through the communication unit.
US09826081B2
Devices, systems, and methods are disclosed for automated multi-device, multi-persona, and wireless SIM management. A virtual SIM database associated with a user is maintained on the mobile service provider's network. Such a virtual SIM database contains multiple personas for that user. The user is furnished with one “stub” SIM to be installed on the user device for each of the user devices the user wishes to use on the mobile service network. One of the personas maintained by the virtual SIM database may be loaded onto the “stub” SIM. In particular, upon occurrence of an event, a selected user device downloads a selected persona from the network and loads it onto its “stub” SIM, so that the selected user device is now registered on the network with that persona.
US09826076B2
An apparatus and method for processing call services in a mobile terminal are provided. The method for processing call services in a mobile terminal includes entering into, when a call is generated, a call handling mode, recognizing and analyzing voice signals sent and received in the call to produce speech analysis information, detecting a state change of the mobile terminal using a sensing unit to produce user behavior information, and predicting, when a state change of the mobile terminal is detected, an application corresponding to the speech analysis information, and activating the application as a follow-up service.
US09826066B2
A system for optimizing network traffic is described. The system includes a packet engine configured to acquire data regarding a flow of a plurality of data packets over a link and to determine transport communication protocol (TCP) characteristics for the flow, and a TCP flavor selector configured to dynamically select a TCP flavor based on the TCP characteristics, where the TCP flavor can be used to modify the flow of data packets over the link. The TCP characteristics dynamically change with time. The TCP flavor selector is further configured to modify the flow using the TCP flavor.
US09826060B1
A digital content provider is configured to identify, based at least in part on various customer user profiles, digital content that is to be pre-loaded onto one or more customer computing devices in advance of the digital content being available for at least one mode of consumption by the one or more computing devices. The digital content provider may use these user profiles, as well as other external information, to identify one or more customers that are to receive the digital content. Subsequently, the digital content provider may download the digital content onto each identified customer's one or more computing devices in advance of the at least one mode of consumption becoming available to the customers. Once the mode of consumption is made available, the digital content provider may enable the use of the pre-loaded digital content.
US09826051B2
Systems, methods, and computer program products for interconnecting content requesting clients with a content provider platforms offering content. A client interface may be configured for transaction-oriented message exchange with the content requesting clients. A runtime module may be configured to map content-provider-specific data formats and content-provider-specific message flows to data formats and message flows utilized by the client interface. Content-provider-protocol-specific plug-ins may be provided. Each content-provider-protocol-specific plug-in defines rules for a mapping between the content-provider-specific data formats and the content-provider-specific message flows of at least one of the content provider platforms and the data formats and the message flows utilized by the client interface.
US09826049B2
QR codes or the like are used in hardlink applications, by which different users may receive different information in response to a user's interaction with a touchpoint. The content delivered to a particular user in response to a hardlink code or a presented hyperlink may be dependent on the time of the scan, the geographic location of the user, a weather condition at the geographical location, personal information associated with the user, a number of previous scans of the code by prior individuals, and any combination of the these or other variables, which may be determined by an originator of the QR code or other party. User devices may be re-directed to alternate content or network addresses based on one or more programmed conditions.
US09826047B2
The present information processing apparatus sets a transmission standby time in accordance with a user instruction, detects a link-up, transmits an SLP packet, times an elapsed time from detection of the link-up, and in accordance with the elapsed time reaching the transmission standby time, controls so as to transmit an SLP packet.
US09826042B2
A session-specific policy may be used to define specific configuration and operational characteristics of different types of sessions. One type of session may have one set of characteristics while a second type of session may have a different set of characteristics. The policy may be applied by a server or client, and may be propagated through an enterprise by a policy distribution management system to establish policies across multiple devices. Different session types include sessions from a local console, a remote user, a device-initiated session, a service-initiated session, and other types. Within each session type, policies may be defined for specific instances of each type. For example, different policies may be defined for different devices in a device-initiated policy.
US09826026B2
One or more exemplary embodiments provide a content transmission method and system, a device and a computer-readable recording medium thereof, configured to map user cloud account information with content. The content transmission method includes determining attribute information regarding content or uploading of the content; mapping user cloud account information, which corresponds to the determined attribute information, with the content; and transmitting the content to a cloud which is determined based on the mapped user cloud account information.
US09826022B2
Content can be shared between devices by transmitting an encoded signal that indicates, to each capable device within range, instructions for accessing the content. For example, a first device can emit an encoded audio signal that can be received by any capable device within audio range of the device. Any device receiving the signal can decode the information included in the signal and obtain a location to access the content from that information. Using such an approach, a first user can quickly and easily share content with several users at the same time without any of the receiving users having to determine or navigate to the content being shared. Further, using signals, such as audio signals, provides the ability for most existing devices to easily share content without significant hardware modification or additional expense.
US09826021B2
A method for controlling a communication apparatus includes transmitting, before establishing a communication with an external apparatus, an advertisement signal for providing notification of an existence of the communication apparatus, and establishing a communication between the communication apparatus and a partner apparatus which has responded to the advertisement signal. The advertisement signal includes control information indicating whether to transmit a content in response to an operation on the communication apparatus or to transmit the content in response to an operation on the partner apparatus. After establishment of the communication between the communication apparatus and the partner apparatus, based on the control information included in the advertisement signal, processing for transmitting the content to the partner apparatus is controlled.
US09826018B1
Systems and methods described herein are directed to a browser mode that provides a secure type of browsing window or a public type of browsing window. Within the secure type of browsing window, systems and methods may enforce all connections as being over Hypertext Transfer Protocol Secure (HTTPS). Within the public type of browsing window, connections that require login, text entry, or HTTPS are prevented since session cookies and browsing activity from the public type of window may be eavesdropped by a third party. The browser provides separate cookie jars (which store the browser cookies) for the secure type window and the public type window.
US09825999B2
A playback control device includes an identification part configured to identify one of communication terminals based on identification data associated with a request to play session data including at least one of image data and sound data; a first acquisition part configured to acquire session data which has been communicated in a session in which the communication terminals have joined; a second acquisition part configured to acquire, in response to the identification data, time data representing at least a time period in which the identified communication terminal had joined the session; and a control part configured to, in response to the time data, allow playing of the session data for the time period in which the identified communication terminal had joined the session and disallow playing of the session data for the time period in which the identified communication terminal had not joined the session.
US09825989B1
An early warning system and method for generating an alert regarding a potential attack on a client device is provided for based on real-time analysis. The early warning system and method generally comprise receiving data associated with an attack alert, wherein the attack alert corresponds to an electrical signal that indicates detection of a malware attack from a remote source. The received data is analyzed using an attack-specific engine that is configured to generate an attack-specific result. An attack value is computed based on the attack-specific result and a consideration of potential attack targets, wherein the attack value is compared to a threshold value so as to determine whether or not to generate an early warning alert. An early warning alert is generated when the attack value matches or exceeds the threshold value.
US09825982B1
A method for managing network vulnerabilities may include obtaining image data regarding a software container located on a network element. The image data may describe a software image used to generate the software container. The method may further include determining, using the image data, a software vulnerability of the software image. The method may further include assigning the software vulnerability to a filesystem key. The method may further include generating, using the software vulnerability and the filesystem key, a vulnerability map of a network. The vulnerability map may describe various software vulnerabilities arranged according to various filesystem keys used on the network. The filesystem key may identify data of the software container within a filesystem on the network element.
US09825978B2
Lateral movement detection may be performed by employing different detection models to score logon sessions. The different detection models may be implemented by and/or utilize counts computed from historical security event data. The different detection models may include probabilistic intrusion detection models for detecting compromised behavior based on logon behavior, a sequence of security events observed during a logon session, inter-event time between security events observed during a logon session, and/or an attempt to logon using explicit credentials. Scores for each logon session that are output by the different detection models may be combined to generate a ranking score for each logon session. A list of ranked alerts may be generated based on the ranking score for each logon session to identify compromised authorized accounts and/or compromised machines. An attack graph may be automatically generated based on compromised account-machine pairs to visually display probable paths of an attacker.
US09825965B2
In accordance with embodiments, there are provided mechanisms and methods for publicly providing web content of a tenant using a multi-tenant on-demand database service. These mechanisms and methods for publicly providing web content of a tenant using a multi-tenant on-demand database service can allow the web content to be published by a tenant using the multi-tenant on-demand database service for use by non-tenants of the multi-tenant on-demand database service.
US09825957B2
A container that manages access to protected resources using rules to intelligently manage them includes an environment having a set of software and configurations that are to be managed. A rule engine, which executes the rules, may be called reactively when software accesses protected resources. The engine uses a combination of embedded and configurable rules. It may be desirable to assign and manage rules per process, per resource (e.g. file, registry, etc.), and per user. Access rules may be altitude-specific access rules.
US09825955B2
Exchanging information includes receiving an authorization request provided by a data request terminal, generating an authorization information updating instruction based on the authorization request, updating, based on the authorization information updating instruction, authorization information of the data request terminal that is stored on the request processing server, the authorization information indicating that the data request terminal has authorization request processing authority, and causing the data request terminal to acquire a data request result corresponding to data request information.
US09825953B2
Embodiments of the invention are directed to systems, methods, and computer program products for presenting authorized data to a target system. The system is configured to receive an indication from one or more target systems to retrieve data from an authorized data source; receive one or more regulatory parameters associated with the one or more target systems; determine one or more domains associated with the data, wherein the one or more domains comprise at least a transaction domain, a reference and master data domain, a derived domain, and a discovery domain; determine one or more data types associated with each of the one or more domains; transform the data based on at least the one or more regulatory parameters, the one or more data management controls, the one or more domains, and the one or more data types; and transmit the transformed data to the one or more target systems.
US09825952B2
An embodiment of the invention allows a network access server to control network access for individual applications that run on a device. The device may be included in a machine-to-machine environment. The embodiment may provide a secure channel between the network access server and the device access layer and another secure channel between the device access layer and the device application layer. Thus, before applications are allowed to access the network those applications may be required to authenticate themselves via a secure channel. Other embodiments are described herein.
US09825950B2
A method, an apparatus, and a system for controlling access of a user terminal, where the method includes receiving, by a controller, an authentication packet sent by an access switching node through an established data tunnel; obtaining, by the controller, a source media access control (MAC) address of the authentication packet; after access authentication implemented on a user terminal, determining, from a maintained correspondence between MAC addresses of user terminals and interface identifiers, an interface identifier corresponding to the MAC address of the successfully-authenticated user terminal, where the interface identifier identifies an interface connected to the user terminal; and sending, by the controller, the determined interface identifier to the access switching node through an established control tunnel, and instructing the access switching node to enable the interface corresponding to the interface identifier.
US09825948B2
To make a trusted web service call, a client application sends a series of messages to obtain tokens that allow service requests to pass through a service relay. The user obtains a first security token by providing the user's credentials. A second token is obtained from a trust broker that validates the first token. Both tokens are then sent with a service request to a service relay. The service relay validates the second token and then passes the first token and the service request to a connector service. The connector service validates the first token and passes the service request to a target back end service. The connector service acts as the user when communicating with the back end service. Service responses are routed back to the user through the connector service and the service relay.
US09825944B2
A computing device described herein utilizes a secure cryptoprocessor of the computing device to compute a response to a request for authorization received from another local or remote device. The secure cryptoprocessor computes the response based on protected authorization credentials stored by the secure cryptoprocessor for one or more devices. The computing device then provides the computed response to the other device to cause the other device to grant or deny authorization. The computing device may also display information associated with the request for authorization, receive input indicating approval of the request, and utilize the secure cryptoprocessor in response to the received input.
US09825942B2
A method of authenticating a video streaming transmission comprising generating a secure token at an application server, providing the secure token to a user device, receiving the secure token at a media server with a publish request from the user device, transmitting the secure token to the application server for authentication, and authenticating the secure token. The publish request from the user device is enabled if the secure token is authenticated by the application server. The connection between the media server and the user device is terminated if the secure token fails to authenticate.
US09825939B2
An identity federation and security token translation module and method for operable engagement with a web application or an internet information service (IIS). A first server includes computer-executable instructions defining the identity federation and security token translation module for managing and facilitating a creation of a custom security principal object for a user requesting access to the web application. A data cache stores the custom security principal object in a non-transitory computer readable media. The identity federation and security token translation module may be changed without making changes to the web application or the IIS.
US09825936B2
Provided is a system and method for providing a certificate, and more specifically a certificate for network access upon a second system. The method includes, identifying a first system having at least one processor and a plurality of users, each user having at least one attribute; receiving from a third party at least one required attribute for certificate based network access; receiving from a user known to the first system a request for certificate based network layer network access to a second system having at least one processor, the request having at least one identifier; querying the first system with the at least one identifier for attributes associated with the user requesting the certificate based network layer network access to a second system; evaluating the attributes associated with the user requesting the certificate to the at least one predefined attribute; and in response to at least one attribute associated with the user requesting the certificate correlating to the at least one predefined attribute, providing from a system other than the first system, as requested by the user a certificate with at least one characteristic for certificate based network layer network access on the second system, the second system distinct from the first system. An associated system for providing a Certificate is also provided.
US09825930B2
An approach is provided for authorizing one or more services from service providers in a communications network. The approach includes receiving a request from a first service provider, the request having an associated primary token and a secondary token identifier, the secondary token identifier relating to resources of a second service provider. Based, at least in part, on the secondary token identifier, a secondary token is identified; and then the secondary token is sent to the first service provider, wherein the first service provider and the second service provider belong to different trust domains and the first service provider can use the secondary token to access resources of the second service provider.
US09825929B2
A computer system, serves as a first platform, provides a user with a first user account on the first platform. The user has a second user account on a second platform; the second user account includes a second contact identification associated with a contact of the user on the second platform; and the contact has a first contact account on the first platform associated with a first contact identification. The computer system also acquires the second contact identification from the second platform; acquires account information of the first contact account based on the second contact identification; and provides the account information of the first contact account to the user.
US09825926B2
A method for delegating a computational burden from a computationally limited party to a computationally superior party is disclosed. Computations that can be delegated include inversion and exponentiation modulo any number m. This can be then used for sending encrypted messages by a computationally limited party in a standard cryptographic framework, such as RSA. Security of delegating computation is not based on any computational hardness assumptions, but instead on the presence of numerous decoys of the actual secrets.
US09825922B2
A streaming one time pad cipher using rotating ports for data encryption uses a One Time Pad (OTP) to establish multiple secure point-to-point connections. This can be used to implement a streaming OTP point-to-point firewall, virtual private network or other communications facility for communicating secure information across one or more insecure networks.
US09825897B2
Embodiments of the present invention relate to systems and methods for enabling entities, such as issuers, merchants, payment processing networks, and mobile-network operators, to send account-related messages and marketing messages to a user's mobile device in response to a message request sent from the user's mobile device. According to some embodiments, the account-related messages and the marketing messages are sent to the user's mobile device in accordance with message parameters that are defined by the user and that are embedded in the message request.
US09825893B2
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for broadcasting audio tweets. A system broadcasting audio tweets receives tweets via telephone devices, wherein each listener hears a telephone call of a broadcast on the telephone devices. Each received tweet is associated with one or more tags specifying tweet content, which is used to analyze received tweets. The system presents a display of analyzed tweets for selection to a host. The host selects one or more tweets and broadcasts the selected tweets as part of the broadcast to the telephone devices. Automatic speech recognition can be used to automatically convert received audio tweets to text to enable tagging and analyzing the tweets.
US09825886B2
Graceful restart in routers having redundant routing facilities may be accomplished by replicating network (state/topology) information.
US09825883B2
The present disclosure provides a structured, pipelined large time-space switch and method of operation resolving interconnect complexity. The time-space switch results in an interconnect complexity that does not grow as the spatial dimension is increased and results in a reduction of long high fan-out nets, a quicker layout, and improved clock speed. With respect to time-space switch fabric implementation, the present invention improves the maximum clock frequency of the switch fabric, and improves integrated circuit layout time by eliminating long high fan-out nets. Certain high-speed large switch fabrics may not be realizable without this implementation, and it significantly reduces implementation time (and cost). The present invention may include link encoding of switch frames by mapping 8B10B control characters into an 64B65B format (similar to Generic Framing Protocol-Transparent (GFP-T)), wrapping 32 65B encoded words with an 11-bit error correcting code, and scrambling the frame with a frame synchronous scrambler.
US09825877B2
A system and method for managing dynamically allocated resources assigned to a service includes providing a service to be used by a plurality of sites in a federation. Usage information associated with the service is communicated to each of the plurality of sites. A disposition of the service is determined based on local policies and the usage information received from other sites by a service owner. The disposition of the service is updated across a plurality of sites in accordance with messages sent by the service owner to reduce resource usage.
US09825874B2
The dynamic proportioning of a maximum queue size of a data transport device queue based on throughput parameters may decrease routing latency of a data transport device. A maximum queue size parameter for a data queue may be calculated based on at least a plurality of throughput parameters during routing of data traffic from a data source device to a data recipient device. Subsequently, a maximum queue size of the data queue may be decreased according to the maximum queue size parameter to prevent enqueuing of incoming service frames into the data queue. The lack of enqueueing of the incoming service frames may cause the data source device to retransmit the one or more incoming service frames to the data transport device, instead of allowing the one or more incoming service frames to be enqueued and trapped in the data queue by additional incoming service frames.
US09825860B2
A flow-driven forwarding strategy includes receiving an Interest packet, where the interest packet includes a flow state indicator. The content associated with the Interest packet is checked to determine whether that content is locally stored. Another check is performed to determine whether any previously received Interest packet has requested the content. In response to the content not being locally stored and no related Interest packet has been previously received, the flow state indicator is checked in the Interest packet. In response to the flow state indicator indicating that the Interest packet is associated with an active flow, forwarding information is extracted from a flow state table if a hop count has a value of zero or from the Interest packet if the hop count has a value greater than zero. The Interest packet is then forwarded to a next hop in accordance with the forwarding information.
US09825854B2
A method for a host machine that hosts at least one tenant virtual machine (VM) of a particular tenant logical network that accesses service VMs of a particular service logical network. The method, prior to a packet being received at a PFE on the host, intercepts the packet that sent by the tenant VM to one of the service VMs based on a set of forwarding rules. The packet includes a source IP address and a source port number of the tenant VM. The method, prior to the packet leaving the PFE in the host, replaces the source IP address and source port number with a replacement IP address and port number pair from a set of replacement IP address and port number pairs allocated to the host for accessing service VMs. The method sends the modified packet to the PFE to forward the modified packet to the service VM.
US09825847B2
A system and method for chaining one or more services in a service provider network. A service chaining policy and associated Service Path Identifier (SPID) are determined at an ingress node with respect to a particular data packet flow. If the service chaining policy involves one or more service nodes to be traversed by the data packet flow, each service node's EIDs and RLOCs are determined. A sequential data exchange process with the service nodes is effectuated using encapsulation of data packets based on the EIDs and RLOCs for obtaining services in accordance with the order of services set forth in the chaining policy.
US09825839B2
Edge analytics and other processes for assessing performance of network elements operating at an edge or other remote access point of a service provider network is contemplated. The edge analytics may be facilitated with edge devices connected, embedded or otherwise associated with the network elements collecting data, metrics or other information reflective of the performance thereof.
US09825836B2
A connected computer may be operated as node by inspecting communications from other nodes that pass through that node. From the communications, two or more pointers may be determined for the given node. These pointers may include a first pointer identified by a default designation that links the given node to a first node in the network, and a second pointer to another node. The second pointer may be identified by a determination that a designated criteria has been satisfied after the given node is placed on the network.
US09825833B2
A method and associated systems for using a software-defined network (SDN) controller to automatically test cloud performance. A bandwidth measuring and optimizing system associated with the SDN controller detects a triggering condition and, in response, directs a network-management tool to measure a bandwidth of a segment of a physical infrastructure of a network and directs the SDN controller to provision a virtual machine that then measures a bandwidth of a corresponding segment of virtual infrastructure that is overlaid upon the physical segment. In some embodiments, these two tests are synchronized so as to concurrently measure physical and virtual bandwidths while the same test data passes through the virtual infrastructure segment. The measured bandwidth of the virtual segment is then compared to the measured bandwidth of the physical segment in order to determine an efficiency of the virtual network.
US09825828B2
Described herein is a network device configured to determine and provide alerts of communication link failures across layers of a communication stack of the network device. The network device determines at a radio link layer of the communication stack that a communication link between the network device and a network has failed. The network device then alerts one or more components associated with another layer of the communication stack of the determination that the communication link has failed.
US09825827B2
A method for managing a network queue memory includes receiving sensor information about the network queue memory, predicting a memory failure in the network queue memory based on the sensor information, and outputting a notification through a plurality of nodes forming a network and using the network queue memory, the notification configuring communications between the nodes.
US09825825B2
A system for associating a data collector with a network account includes a first computing device to collect data associated with the use of a number of object devices on a network. The first computing device creates a network account associated with a second computing device, and the first computing device assigns a filename to a data collector data packet. The filename includes information related to the network account associated with the second computing device. The information related to the network account is embedded within binary code of the data collector data packet.
US09825823B2
A technique includes providing at least one service blueprint to orchestrate application programming interfaces to manage the lifecycle of at least one cloud service.
US09825817B2
According to an example of the present disclosure, a service template providing a service may be found according to type of the service. A resource zone matching the service template may be found from a resource pool. A network resource matching a service unit in the service template may be found from the resource zone. A network parameter configured for the service unit may be sent to the network resource.
US09825816B2
Resource-aware dynamic bandwidth control uses information about current network state and receiver performance to avoid, minimize and/or recover from the effects of network spikes and data processing spikes. Linear models may be used to estimate a time required to process data packets in a data processing queue, and are thus useful to determine whether a data processing spike is occurring. When a data processing spike occurs, an alarm may be sent from a client to a server notifying the server that the client must drop packets. In response, the server can encode and transmit an independent packet suitable for replacing the queued data packets which can then be dropped by the client and the independent packet present to the processor instead.
US09825809B2
Aspects of the present disclosure relates to methods, computer readable mediums, and NoC architectures/systems/constructions that can automatically mark and configure some channel of a NoC as store-and-forward channels, and other channels of the NoC as cut-through channels, and can further resize the buffers/channels based on the given NoC specification and associated traffic profile. An aspect of the present disclosure relates to a method for configuring a first set of plurality of channels of a NoC as store-and-forward channels, and configuring a second set of plurality of channels of the NoC as cut-through channels based on the determination of idle cycles in a given NoC specification and associated traffic profile.
US09825807B2
In an embodiment, a method comprises: detecting a change in a multiple-switch configuration in a data communications network comprising a plurality of packet data switches configured as roots of multicast trees. In response to detecting that the multiple-switch configuration has changed, a first value, a second value and a third value representing limits on a number of multicast trees supported in the network and prioritization of the switches are retrieved. The method further comprises determining a type of the multiple-switch configuration change. In response to determining that the type indicates that a first switch was added to the multiple-switch configuration, using at least the first, second and third values, it is determined whether to configure the first switch as a first root in the multiple-switch configuration. The method is performed by one or more computing devices.
US09825794B2
Disclosed is a method for the detection of more than one signals contained in a receive signal, the method comprising: down-converting the receive signal, thereby providing a down-converted signal in a complex IQ base band; at least partially cancelling the strongest user in the down-converted signal, thereby allowing for the detection of a possible secondary user.
US09825793B2
Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
US09825791B2
Disclosed are a method and device for receiving a frequency-shift keying signal. The device for receiving a frequency-shift keying signal includes a front-end circuit, complex differential discriminators, and a recovery circuit. The front-end circuit receives a signal transmitted via a frequency-shift keying channel, and generates the baseband signal of the received signal. The complex differential discriminators have a plurality of orders and use the complex conjugate of the baseband signal of the received signal. The recovery circuit recovers symbols by applying a maximum likelihood sequence estimation (MLSE) technique to the output values of the complex differential discriminators having the plurality of orders.
US09825790B1
An electronic toll collection receiver, comprising: an enveloping module configured to envelope an amplitude modulation (AM) signal; an averaging module connected to the enveloping module, configured to obtain an average value of the enveloped AM signal; a direct current blocking module connected to the enveloping module and the averaging module, configured to eliminate the average value from the enveloped AM signal; a comparing module connected to the direct current blocking module, configured to compare the average value and each of amplitude values of the enveloped AM signal; a correcting module connected to the comparing module and the directing current blocking module, configured to correct output values from the comparing module; and a decoder module connected to the correcting module, configured to decode the corrected output values from the correcting module.
US09825777B2
A method is provided in one example embodiment and includes configuring on a network element a first tunnel from the network element to a first network, wherein the configuring comprises mapping a nexthop address of the local network element to a transport address of the tunnel on the network to create a first nexthop-to-transport mapping for the network element; and advertising the first nexthop-to-transport mapping along with routing information for the network element to remote network elements.
US09825775B2
A LIN communication system includes a master controller, and at least one slave controller connected to the master controller via local interconnect network (LIN) communication. The master controller allows the at least one slave controller to enter a sleep mode in a normal situation through a sleep mode message of an unconditional frame provided via the LIN communication and checks a failure state of the at least one slave controller in an abnormal situation.
US09825753B2
Disclosed herein are systems, methods, and computer-readable storage media for enabling improved cancellation of self-interference in full-duplex communications, or the transmitting and receiving of communications in a single frequency band without requiring time, frequency, or code divisions. The system estimates the signal strength and phase of a self-interference signal, generates a cancellation signal based on this estimate, then uses the cancellation signal to suppress the self-interference before sampling received analog signal. After applying the cancellation signal, the system samples and digitizes the remaining analog signal. The digitized signal is then subjected to additional digital cancellation, allowing for extraction of the desired signal.
US09825752B2
In some aspects, the disclosure is directed to methods and systems for in-band full-duplex operation. A first device transmits a frame to a second device wirelessly within a first frequency band, in one or more embodiments. In one or more embodiments, the first device detects, while the transmission of the frame is ongoing, feedback from the second device within the first frequency band. In one or more embodiments, the feedback is in response to the ongoing transmission of the frame. In one or more embodiments, the first device determines, responsive to the feedback, whether to stop the ongoing transmission of the frame or to update a transmission parameter for the ongoing transmission within the first frequency band.
US09825744B2
A method of transmitting a signal using a plurality of modulation and coding schemes by a transmitter in a wireless communication system is provided. The method includes when a position of an active tone hits a position of a pilot tone of an adjacent cell, the active tone corresponding to a tone boosted through an application of a hybrid Frequency Shift Keying (FSK) and Quadrature Amplitude Modulation (QAM) Modulation (FQAM) scheme among tones included in an FQAM symbol based on the FQAM scheme in which a QAM scheme and a FSK scheme are combined, detecting two or more tones, which do not hit the position of the pilot tone among the tones included in the FQAM symbol, and transmitting signals by using the detected two or more tones.
US09825740B2
A carrier aggregation transmission method and apparatus are provided. The method includes: bearing N carriers in a preset band, where N is a positive integer greater than 1, and a nominal bandwidth values of the carriers are less than or equal to 5 MHz; aggregating the N carriers, to make nominal channel spacing between adjacent carriers among the N carriers is integral multiples of 0.2 MHz; and transmitting the N aggregated carriers. Besides, by further appropriately setting the chip rate corresponding to the carriers with different nominal bandwidths, the performance of small-bandwidth and narrow-bandwidth aggregation systems is efficiently improved, and existing hardware and algorithms can be reused.
US09825730B1
A serial communication link includes a receiver and a transmitter coupled to the receiver by a first serial communication lane operating at a first speed, and a second serial communication lane operating at a second speed. The second speed is slower than the first speed. The transmitter can include bit steering logic that receives a data stream, provides a first number of bits of the data stream to the first serial communication lane, and provides a second number of bits to the second serial communication lane. The proportion of the first number of bits to the second number of bits is the same as a proportion of the first speed to the second speed.
US09825728B2
A processor executes the following processes. An obtainment process obtains a first number of lines, which represents a number of lines that are deleted after changing, among lines that pass through the same line route. An extraction process extracts a line for which a first demand, which is accommodated before and after changing, does not exist. The extraction process further extracts lines in descending order of a band of the first demand from among lines including first demands until a total number of extracted lines reaches the first number of lines when the number of the extracted lines is smaller than the first number of lines. Then, a fixation process fixes a first demand accommodated in a line that has not been extracted. A deletion process deletes the extracted lines. A determination process determines an order of changing line routes of demands.
US09825724B2
According to some embodiments, a master device sends synchronization packets to one or more slave devices, and does so periodically based on a master clock signal having a master clock frequency. At each of the slave devices, an algorithm estimates the master clock frequency based on the timing of synchronization packet arrivals the slave device. The algorithm may estimate the master clock frequency using both the currently-observed timing of synchronization packet arrivals and the history of previous synchronization packet arrivals (e.g., previously-observed timing of synchronization packet arrivals). Based on the estimated master clock frequency, each of the one or more slave devices can update the frequency of their respective slave clock signal (e.g., using a frequency offset) to match that of the estimated master clock frequency.
US09825718B2
A system for mobile device localization is provided with a primary device. The primary device is configured to transmit a first signal at a first transmission power level to a secondary device and to receive a response signal that is indicative of a signal strength indicator of the first signal as received by the secondary device. The primary device is further configured to determine a second transmission power level based on the signal strength indicator; transmit a second signal at the second transmission power level to the secondary device; and to determine a distance between the primary device and the secondary device based on a filtered transmission power level value.
US09825717B2
Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) including detecting transitions between RF data packet signal transmission and reception by the DUT, detecting transitions between different RF data packet signal transmission operations by the DUT, and detecting transitions between different RF data packet signal reception operations by the DUT.
US09825716B2
The present disclosure provides a method in a base station of a radio network for antenna calibration of a first transceiver of the base station with respect to a second transceiver. The method comprises at least one of a first group and a second group of steps. The first group of steps comprises collecting a first group of amplitude and phase differences between a first calibration signal and each of a first and a fourth reception signals and between a second calibration signal and each of a second and a third reception signals. The first group of steps further comprises estimating, based on the first group of amplitude and phase differences, a signal response characteristic difference between a calibration reception chain of the first transceiver and a calibration reception chain of the second transceiver for reference antenna reception calibration of the first transceiver with respect to the second transceiver.
US09825709B2
A traveling wave amplifier includes: a first line to transmit an input signal; an output-side line to transmit an output signal; amplifiers each having an input node and an output node, the input nodes being connected with the first line at first intervals and receiving the input signal, each of the amplifiers amplifying a signal input to the input node and outputting the amplified signal from the output node, the output nodes being connected with the output-side line at second intervals and generating the output signal; a second line to transmit another input signal having a phase opposite to a phase of the input signal; a first resistor having a first end connected with the first line and a second end; and a second resistor having a first end connected with the second line and a second end connected with the second end of the first resistor.
US09825708B2
A compensation apparatus and method for inter-channel nonlinear damage are disclosed where the apparatus includes: an iteration parameter determining unit configured to determine an iteration step of cross-phase modulation damage compensation performed in each channel in a multichannel optical fiber transmission link; an estimating unit configured to divide an optical fiber transmission link in each iteration step of each channel into one or more optical fiber segments, and perform cross-phase modulation damage estimation at a position in each optical fiber segment where the nonlinear damage is maximal; and a first compensating unit configured to perform cross-phase modulation damage compensation according to the result of the cross-phase modulation damage estimation. By performing cross-phase modulation damage estimation at a position in each optical fiber segment where the nonlinear damage is maximal, cross-phase modulation damage compensation may be performed effectively, and performance of the communication system may be improved.
US09825706B2
A multiplexed sensor system includes a control unit in communication with a plurality of sensors. A plurality of optic fibers defines a communication path between the plurality of sensors and the control unit. A multiplexing portion communicates with a plurality of sensors along a common one of the plurality of optic fibers and a protected channel through which at least a portion of the optic fibers are routed. The protected channel at least partially surrounds the optic fibers and shields the optic fibers from an environment outside the protected channel. A cooling flow is provided through the protective channel for minimizing temperature fluctuations within the protective channel. A method is also disclosed.
US09825705B2
The system of the present invention includes a plurality of ONTs adapted to provide multiple voice and data related services to different subscribers. Each of the plurality of ONTs comprises at least one receiver adapted to receive optical signals, a de-multiplexer to de-multiplex the optical signal into component signals, at least one transmitter and at least one output port. Further, the system includes a plurality of routers operatively coupled to the each of the plurality of ONTs. Furthermore, the system includes a plurality of subscriber devices communicably coupled to each of the plurality of routers. The subscriber devices are adapted to receive the de-multiplexed component signals routed by the corresponding router and provide data and voice services to the particular subscriber. Each of the ONTs configures separate domains for each of the routers operatively coupled thereto so as to enable sharing of the ONT.
US09825704B2
A modulation device includes: a modulation ID signal generator that generates a first ID signal including first identification information; a reception terminal capable of receiving a second ID signal including second identification information; a transmission terminal capable of transmitting the first ID signal and the second ID signal out of the modulation device; a detector that detects a received state in which the second ID signal is received by the reception terminal and an unreceived state in which the second ID signal is not received by the reception terminal; and a switch circuit that outputs the first ID signal to the transmission terminal when the detector detects the unreceived state and outputs the second ID signal to the transmission terminal when the detector detects the received state.
US09825703B2
An optical communication device and a control method thereof are provided. The optical communication device includes a driving module, a data transmission module, a light emitting module, and a feedback module. The driving module generates a driving current. The data transmission module generates a data current according to a piece of data. The light emitting module is electrically connected to the driving module and the data transmission module directly and emits visible light according to an illuminating current generated by combining the driving current with the data current. The feedback module adjusts a direct current (DC) potential of one of the driving current and the data current so as to make an average intensity of the visible light equal a preset intensity.
US09825694B2
Aspects of methods and systems for transceiver array synchronization are provided. An array based communications system comprises a plurality of transceiver circuits and an array coordinator. Each transceiver circuit of the plurality of transceiver circuits comprises a plurality of wireless transmitters and a local oscillator generator. Each wireless transmitter of the plurality of wireless transmitters is able to modulate a local oscillator signal from the local oscillator generator based on a weighted sum of a plurality of digital datastreams. The array coordinator is able to adjust a phase of a first local oscillator signal based on a phase difference between the first local oscillator signal and a second local oscillator signal. The first local oscillator signal is generated by a first local oscillator generator of a first transceiver circuit. The second local oscillator signal is generated by a second local oscillator generator of a second transceiver circuit.
US09825688B2
An audio device capable of intelligently switching between multiple antennas is provided. The audio device receives a wireless signal by a default receiving antenna, determines signal quality metrics of the wireless signal received by various antennas, compares the signal quality metrics of the wireless signal received by the various antennas, and selects a receiving antenna from the various antennas to receive the wireless signal based on the comparison of the signal quality metrics of the wireless signal received by the various antennas.
US09825685B1
Systems and methods are described for performing beam forming at multiple access nodes. A first access node may receive a signal level from a wireless device that fails to meet a signal level criteria. It may be determined that beam forming is enabled at the first access node. Beam forming data may then be communicated between the first access node and a second access node. It may also be determined whether coordinated multipoint transmissions are enabled at the first access node. Beams transmitted from the first access node and the second access node may be adjusted based on whether coordinated multipoint transmissions are enabled from the first access node.
US09825664B2
A holder for a mobile telecommunications terminal, in particular a smartphone, has a receptacle for the terminal. The holder has a first locking mechanism by which the smartphone can be locked in the receptacle. There is also described a system for fastening a smartphone to a shopping trolley handle, a base station for accommodating a plurality of holders and a method for fastening a smartphone to a shopping trolley handle.
US09825661B2
An integrated multi-user satellite receiver includes: a single-chip, and the single-chip includes: a first synthesizer for generating a first oscillating signal having a first frequency; a first frequency multiplier for generating a second oscillating signal having a second frequency according to the first oscillating signal; a second synthesizer for generating a third oscillating signal having a third frequency; and a second frequency multiplier for generating a fourth oscillating signal having a fourth frequency according to the third oscillating signal; wherein the single-chip generates a first down-converted signal according to a first satellite signal and the second oscillating signal, generates a second down-converted signal according to the first satellite signal and the fourth oscillating signal, generates a third down-converted signal according to a second satellite signal and the second oscillating signal, and generates a fourth down-converted signal according to the second satellite signal and the fourth oscillating signal.
US09825660B2
Systems, devices and methods related to diversity receivers. In some embodiments, a receiving system can include a controller configured to selectively activate one or more of a plurality of paths between an input and an output, and a plurality of amplifiers, with each one of the plurality of amplifiers disposed along a corresponding one of the plurality of paths and configured to amplify a signal received at the amplifier. The receiving system can further include two or more of features including (a) variable-gain amplifiers, (b) phase-shifting components, (c) impedance matching components, (d) post-amplifier filters, (e) a switching network, and (f) flexible band routing. In some embodiments, such a receiving system can be implemented as a diversity receive (DRx) module.
US09825658B2
A distortion compensation apparatus includes a retention unit that retains a coefficient for distortion compensation for each of a plurality of time segments of a burst signal that keeps a constant power level, and a distortion compensation unit that, by using a coefficient for a time segment that corresponds to elapsed time from a head of the burst signal among the coefficients retained by the retention unit, executes distortion compensation for the time segment.
US09825653B2
The present invention provides a radio architecture that contains a main radio path and a sensing path. The parameters of the main radio path are controlled by a cognitive engine. The main radio path is tuned to a desired frequency band. The sensing path is used to monitor the spectrum around the desired frequency band. To minimize effects of undesired non-linearity on sensing, sensing path may have a lower gain setting. The cognitive engine determines the optimal setting of the main RF front-end with respect to the current state of the spectrum.
US09825651B2
An operating method of a controller includes: a first step of generating an internal codeword including an ECC unit data and an internal parity code by performing ECC decoding operation to an input data; a second step of updating an external parity code based on the ECC unit data, which is included in the internal codeword currently generated, and the ECC unit data, which is included in the internal codeword previously generated; and a third step of storing in a semiconductor memory device one or more internal codewords and the updated external parity code, which are generated through repetition of the first and second steps, by a unit of predetermined storage size.
US09825650B2
This invention provides a cyclically-coupled (CC-) quasi-cyclic (QC-) low-density parity-check (LDPC) code and its decoder architecture. The essence of the invention is to introduce the convolutional nature to a plurality of individual block codes internally so as to form a resultant block code with a prolonged code length while slightly increasing the hardware complexity in decoder realization. The CC-QC-LDPC code is formed by cyclically coupling a plurality of sub-codes each being a QC-LDPC code such that overlapping of some variable nodes between two consecutive sub-codes results. The decoder comprises plural sub-decoders each configured to decode the channel messages for one sub-code. The sub-decoders are arranged in a ring shape such that an individual sub-decoder is configured to communicate edge messages with two neighboring sub-decoders adjacent to said individual sub-decoder in the decoding of the channel messages. The sub-decoders are configured to operate concurrently for simultaneously decoding individual sub-codes.
US09825647B1
In one embodiment, an apparatus comprises a decompression engine to perform a non-speculative decode operation on a first portion of a first compressed payload comprising a first plurality of codes; and perform a speculative decode operation on a second portion of the first compressed payload, wherein the non-speculative decode operation and the speculative decode operation share at least one decode path and the non-speculative decode operation is to utilize bandwidth of the at least one decode path that is not used by the non-speculative decode operation.
US09825643B1
A digital to analog conversion, DAC, device for converting digital signals to analog signals comprises a RF output for outputting the analog signals, a thermometer segment comprising a first number of data slices and a second number calibration slices, and a calibration controller, which electrically disconnects one of the data slices from the RF output and at the same time connects one of the calibration slices to the RF output as replacement slice for the respective data slice and performs a calibration of the disconnected data slice.
US09825642B2
A subsystem configured to implement an analog to digital converter that includes a high speed comparator with an embedded reference voltage level that functions as a calibrated threshold. A calibration element applies power to a reference voltage system. The calibration element then selects a differential analog voltage and applies the differential analog voltage to the inputs of the comparator. A digitally coded signal then configures an array of switches that connect complements of integrated resistors to each input of the comparator so that the switching point of the comparator occurs coincident with the applied differential analog reference voltage, nulling out the effect of the applied differential analog voltage and comparator errors. The calibration element then removes power from the reference voltage system. As a result, the comparator is configured with an embedded threshold that equals the differential analog reference voltage.
US09825641B1
A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
US09825630B2
A Single-Pole-Single-Throw (SPST) switch for RF application is disclosed that can include a semiconductor MOSFET transistor T, wherein its drain terminal can be connected to a resistor R3 and capacitor C2. It can have a source terminal connected to a resistor R1 and capacitor C1, a gate terminal connected to resistor R2, a body connected by resistor R4 to GND, and the body can be connected to the anode of a diode DE The Cathode of diode D1 can be connected to a power supply Vdd through a resistor R6. The Cathode of diode D1 can also be connected to the cathode of another diode D2. The anode of D2 can be connected to GND through resistor R5. Capacitor C1 can be connected to an I/O port P1, and capacitor C2 can be connected to an I/O port P2. Inductor L1 can connect to ports P1 and P2, while inductor L2 can connect the source terminal and drain terminal of MOSPET T. This disclosure also provides a Single-Pole-Double-Throw (SPDT) switch and Single-Pole-Multiple-Throw (SPMT) switch based on the proposed SPST concept. The SPST disclosed can offer higher isolation and higher linearity to the transmit (TX) arm of the Radio-Frequency Front-End-Module (RF FEM), while maintaining relatively good performance in the receive (RX) arm of the RF FEM.
US09825628B2
An electronic device includes a transmission interface and a control circuit. The transmission interface includes a signal reference contact and a signal transmission contact. The control circuit is electrically coupled between the signal reference contact and a ground layer, in which the control circuit is configured to selectively conduct the signal reference contact and the ground layer, and when the signal reference contact and the ground layer are conducted, the signal transmission contact is configured to transmit a first signal, and when the signal reference contact the ground layer are not conducted, the signal reference contact is configured to transmit a second signal. A transmission frequency of the second signal is less than a transmission frequency of the first signal.
US09825627B2
An apparatus for performing signal driving in an electronic device may include a decoupling capacitor and at least one switching unit (e.g. one or more switching units). The decoupling capacitor may have a first terminal and a second terminal, and may be positioned in an output stage within the electronic device and coupled between a first predetermined voltage level and another predetermined voltage level, where the apparatus may perform signal driving with aid of the output stage. In addition, the aforementioned at least one switching unit may be coupled between one terminal of the first and the second terminals of the decoupling capacitor and at least one of the first predetermined voltage level and the other predetermined voltage level, and may be arranged for selectively disabling the decoupling capacitor.
US09825624B2
In the case of reducing an effect of variations in current characteristics of transistors by inputting a signal current to a transistor in a pixel, a potential of a wiring is detected by using a precharge circuit. In the case where there is a difference between a predetermined potential and the potential of the wiring, a charge is supplied to the wiring to perform a precharge by charging rapidly. When the potential of the wiring reaches the predetermined potential, the supply of charge is stopped and a signal current only is supplied. Thus, a precharge is performed only in a period until the potential of the wiring reaches the predetermined potential, therefore, a precharge can be performed for an optimal period.
US09825622B2
A cascode switch circuit includes a first transistor, a second transistor, and a protector. A first transistor receives a signal from a first terminal through a first end and transfers the signal to a second end in response to a first control signal. A second transistor delivers the signal that the first transistor transfers to a second terminal in response to a second control signal. A protector is connected between a gate of the first transistor and the second terminal. The first control signal is provided to allow the first transistor to operate in a normally-on state. The second control signal is provided to allow the second transistor to operate in a normally-off state.
US09825620B2
A method and apparats for undervoltage detection and correction is disclosed. An IC includes sensors implemented in various functional circuit blocks. The sensors are implemented using ring oscillators, and may be characterized by a polynomial. The sensors are used to monitor a supply voltage provided to a corresponding functional unit. The sensors provide information indicative of the voltage on the supply voltage node over successive clock cycles. Comparison circuitry may be used to compare the detected voltage to one or more voltage thresholds, while delta comparison circuitry may be used to determine a slope, or rate of change of the voltage. Based on comparisons performed by the comparison circuitry and the delta comparison circuitry, control circuitry may determine if one or more voltage correction actions are to be taken in order to bring the voltage on the supply node into a specified range.
US09825617B2
A circuit and method for digital controlling the slew rate of load voltage are provided. The circuit is comprised of a digital slew-rate control unit that utilizes a feedback signal to generate control signals where the feedback signal indicates the observed rate of voltage change on the load. The circuit is further comprised of a load driver circuit that is operated by the control signals and provides a slew-rate controlled output voltage used to operate a load switch, where the load switch provides power to the load. The circuit is configured to operate the load switch using a slew-rate controlling driver, depending on the state of the load switch transition, and a non-controlling driver.
US09825611B2
Multi-band filters and communications devices are disclosed. A multi-band filter has a lower pass-band and an upper pass-band separated by an intervening stop-band. The multi-band filter includes a first ladder network and a second ladder network coupled in series. The first ladder network is configured to provide transmission zeros at frequencies below a lower edge of the lower pass-band and transmission zeros at frequencies above an upper edge of the upper pass-band. The second ladder network is configured to provide transmission zeros at frequencies within the intervening stop-band.
US09825606B2
A wireless communication device and a filter are provided. The filter has an input end and an output end and includes a first energy storage element, a first series resonant circuit, a second series resonant circuit, a first parallel resonant circuit and a second parallel resonant circuit. The first and the second series resonant circuits respectively have a first capacitor and a first inductor connected in series. The first and the second parallel resonant circuits respectively have a second capacitor and a second inductor connected in parallel. The first series resonant circuit and the first parallel resonant circuit are electrically connected in cascade between a first end of the first energy storage element and a ground, and the second series resonant circuit and the second parallel resonant circuit are electrically connected in cascade between a second end of the first energy storage element and the ground.
US09825600B2
An electronic device includes a waveform generator, a comparator, and an amplifier. The waveform generator receives a voltage from a power supply to the electronic device and outputs a voltage waveform signal. The comparator compares an input signal and the voltage waveform signal to output a first pulse-width-modulated signal. The amplifier receives the first pulse-width-modulated signal and outputs a second pulse-width-modulated signal.
US09825596B2
Various embodiments of switched amplifiers are disclosed herein. In some embodiments, a switched amplifier may include a first amplifier; a second amplifier; an input matching network common to both the first and second amplifiers; and at least one switch to couple an input of the switched amplifier, via the input matching network, to one of the first amplifier or the second amplifier. In some embodiments, a switched amplifier may include a first amplifier; a second amplifier; an input matching network common to both the first and second amplifiers or an output matching network common to both the first and second amplifiers; and a bias generation circuit to selectively (1) provide a first bias current to the first amplifier or (2) provide a second bias current to the second amplifier, wherein the second bias current is less than the first bias current.
US09825594B2
A power amplification module includes: a first transistor that amplifies a first radio frequency signal and outputs a second radio frequency signal; a second transistor that amplifies the second radio frequency signal and outputs a third radio frequency signal; and first and second bias circuits that supply first and second bias currents to bases of the first and second transistors. The first bias circuit includes a third transistor that outputs the first bias current from its emitter or source, a capacitor that is input with the first radio frequency signal and connected to the base of the first transistor, a first resistor connected between the emitter or source of the third transistor and the base of the first transistor, a second resistor connected between the capacitor and the emitter or source of the third transistor, and a third resistor connected between the capacitor and the base of the first transistor.
US09825585B2
Discussed is a solar cell measuring apparatus to measure a current of a solar cell having a photoelectric converter and first and second electrodes electrically insulated from each other, both the first and second electrodes being located at one surface of the photoelectric converter. The solar cell measuring apparatus includes a measuring unit which includes a first measuring member corresponding to the first electrode and a second measuring member corresponding to the second electrode, wherein the first and second measuring members comes into close contact with the solar cell at the surface of the photoelectric converter to measure the current of the solar cell.
US09825578B2
Object of the present disclosure is to improve accuracy of over-temperature protection of an electric motor. A control device controls an inverter main circuit for driving the electric motor. An electric power conversion circuit controller acquires DC voltage input to the inverter main circuit, output voltage of the inverter main circuit, motor amperage of current flowing through the electric motor, and motor frequencies indicating rotation rate of the electric motor. Based on at least one of the DC voltage, output voltage, motor amperage and motor frequencies, a motor loss estimator calculates a stator loss and rotor loss, each including fundamental and harmonic losses of the electric motor. Based on the inverter output voltage, stator loss and rotor loss, the electric power conversion circuit controller outputs an actual control value for control of the inverter main circuit.
US09825568B2
A drive system has: a three-phase motor, having: a shaft, a first three-phase winding set, having: a three-phase stator winding for connection to a three-phase alternating voltage network and a three-phase rotor winding, which is coupled to the shaft in a mechanical, rotationally fixed manner, a second three-phase winding set, having: a three-phase stator winding for connection to the three-phase alternating voltage network in such a manner that rotary field is produced that runs in the opposite direction to a rotary field that is produced by the stator winding of the first winding set.
US09825566B2
A control circuit of a motor control apparatus includes a shift range switchover control part for rotationally driving a rotor of the motor to a target position, which corresponds to a target shift range, a wall-hitting control part for rotating the rotor until the driven body hits one of limit positions of a movable range of the driven body at a speed lower than that of the rotor controlled by the shift range switchover control part, and a speed check part for checking whether a rotation speed of the rotor is within a predetermined speed range, when the rotor is rotated by the wall-hitting control part. The wall-hitting control part limits a power supply angular interval to be smaller when the rotation speed of the rotor is within the predetermined speed range than when the rotation speed of the rotor is lower than the predetermined speed range.
US09825564B2
A motor controller includes a square wave voltage generator and adding circuitry for adding the square wave voltage to a first drive voltage that is connectable to the stator windings of a motor. A current monitor for monitoring the input current to the motor as a result of the square wave voltage. A device for determining the position of the rotor based on the input current.
US09825555B2
A semiconductor control device includes a switching element including a main element, and a sense element connected in parallel with the main element; and a control circuit configured to bias a sense electrode of the sense element by a negative voltage, and to detect a leakage current of another switching element connected in series with the main element. The control circuit biases the sense electrode by the negative voltage, for example, so as to turn on the sense element, without turning on the main element.
US09825546B2
Circuits that provide an auxiliary power supply on the secondary side of an isolated switched-mode power converter are described. Such an auxiliary supply may be used to provide power to a secondary side controller or to other circuitry in the secondary side of the power converter. During at least a start-up phase of the power converter, the secondary side auxiliary power supply is supplied power by use of a self-starting primary side driver that operates autonomously until the secondary side controller is fully operational. Circuits and methods for such a self-starting primary side driver are provided. The techniques disclosed provide for a secondary side auxiliary power supply that uses minimal additional circuitry.
US09825529B2
A voltage conversion control apparatus is a voltage conversion control apparatus which controls a voltage converter having an upper switching element and a lower switching element, and has a calculating device which calculates duty ratio such that output current of an electricity storage apparatus reaches target value and the duty ratio is within predetermined allowable range; a limit relaxing device which relaxes at least one of upper limit value and lower limit value of the allowable range on the basis of magnitude relationship between predetermined threshold value and current deviation which is obtained by subtracting the output current from the target value; and a controlling device which controls the upper switching element and the lower switching element to perform a switching control on the basis of the duty ratio which is calculated by the calculating device.
US09825523B2
A converter control arrangement (18) for regulating the output current of a dc source power converter (16) comprises a current regulator (20) for regulating the output current based on a comparison of an output current value (Iout) of the dc source power converter (16) with a desired target current value (Itgt). When the output voltage value (Vout) of the dc source power converter (16) is within a normal operating voltage range between minimum and maximum voltage values (Vmin, Vmax) defined with respect to a voltage reference value (Vref) of the dc source power converter (16), the converter control arrangement (18) controls the target current value (Itgt) so that it is equal to a desired reference current value (Iref). When the output voltage value (Vout) is outside the normal operating voltage range, which typically indicates a fault condition, the converter control arrangement (18) modulates the reference current value (Iref) to provide a target current value (Itgt) that is less than the reference current value (Iref).
US09825514B1
An induction motor or generator assembly for converting either of an electrical input or rotating work input to a mechanical or electrical output. An outer annular arrayed component is rotatable in a first direction and includes a plurality of magnets. An inner concentrically arrayed and reverse rotating component exhibits a plurality of outwardly facing and circumferentially spaced array of coil-subassemblies opposing the magnetic elements, such that a gap separates the coil-subassemblies from the magnets. The coil sub-assemblies each include a plurality of concentrically arrayed coils configured within a platform support of the inner component. A drive box including a sleeve shaped trunk and a base, a pair of rotatable wheels supported at annular offset locations of said base and receiving looped ends of a belt, said belt also channeling upper and lower pulley rings associated with said inner and outer components.
US09825512B2
A laminated core manufacturing method is linearly arranging and punching out a plurality of separate core pieces formed of a back yoke portion and a magnetic-pole teeth portion protruding from the back yoke portion and die-cut caulking. The manufacturing method includes: a first step of punching out a first region located on an opposite side to the magnetic-pole teeth portion between adjacent ends of the back yoke portions of the core pieces; a second step of punching out a second region located on a side of the magnetic-pole teeth portion between the adjacent ends of the back yoke portions of the core pieces; a third step of punching out a region that brings the first region punched out in the first step and the second region punched out in the second step into communication; and a fourth step of forming the magnetic-pole teeth portion by punching.
US09825510B2
An electrical machine system includes a stator having a conical stator surface defining a rotary axis. A rotor is operatively connected to the stator for rotation relative thereto, wherein the rotor includes a conical rotor surface. A conical gap is defined between the conical surfaces of the stator and rotor about the rotary axis. An actuator is operatively connected to at least one of the stator and rotor for relative linear motion along the rotary axis of the stator and rotor to change the conical gap, wherein the actuator provides relative linear motion between a first position for a first conical gap width and a second position for a second conical gap width different form the first conical gap width. In both the first and second positions the full axial length of one of the rotor or stator is axially within the axial length of the other.
US09825507B2
It comprises a rotor and a stator that they both may be formed of a single piece or they may be formed of a number of sectors. The generator further comprises at least one active module unit as an independent unit from both the rotor and the stator. The active module unit includes at least one permanent magnet, a magnet support structure attached thereto, a first attaching mechanism to removably attach the magnet support structure to the rotor or the stator, at least one coil module comprising at least one coil winding and a magnetic core, and a second attaching mechanism to removably attach the coil module to the other of the rotor or the stator. The coil module is spaced apart from the permanent magnet a predetermined distance.
US09825501B2
An electric motor for high speed operation use and a rotor which enables use of common parts with electric motors for low speed operation use and which thereby enables reduction of the manufacturing costs. The rotor is provided with a shaft, a rotor core which is fastened to the shaft at the outside in the radial direction and has a first end face at one end in the axial direction and a second end face at the other end in the axial direction, a plurality of conductors which are arranged at the rotor core, and a pair of end rings which are respectively arranged adjoining the first end face and the second end face and which short-circuit the plurality of conductors with each other. The shaft has an outer circumference, while the end rings have outer circumferences which are arranged concentrically with respect to the outer circumference of the shaft.
US09825500B2
A ripple spring includes a body including a central portion having a substantially sinusoidal shaped surface and a substantially planar end portion extending from each end of the central portion. A stator bar may include an armor layer including a novalac epoxy resin impregnated glass composite.
US09825499B2
An axial gap electrical machine employs unique architecture to (1) overcome critical limits in the air gap at high speeds, while maintaining high torque performance at low speeds, while synergistically providing a geometry that withstands meets critical force concentration within these machines, (2) provides arrangements for cooling said machines using either a Pelletier effect or air fins, (3) “windings” that are produced as ribbon or stampings or laminates, that may be in some cases be arranged to optimize conductor and magnetic core density within the machine. Arrangements are also proposed for mounting the machines as wheels of a vehicle, to provide ease of removing and installing said motor.
US09825487B2
An apparatus includes: a storage battery including one or more storage batteries and electrically connected to a predetermined load; a detector which detects a power outage state in which no electric power is being supplied from a power system; a first switch between the power system and the storage battery; and a controller which controls at least the first switch. When the detector detects the power outage state, the controller turns off the first switch to electrically disconnect the storage battery and the power system, and the storage battery causes the one or more storage batteries to discharge and supplies electric power to the controller and the predetermined load.
US09825486B2
Methods and systems are described for using detection coils to detect metallic or conductive foreign objects that can interfere with the wireless transfer of power from a power transmitter to a power receiver. In particular, the detection coils are targeted to foreign objects that are smaller than a power transmitter coil in the power transmitter.
US09825467B2
A building energy control system and method are provided. The building energy control system may include a user interface unit configured to display an energy control situation and an energy control guide that corresponds to the energy control situation to manage a building and a facility, and to receive an input according to the energy control guide and an energy control unit configured to control energy consumption in the building and the facility through control of the building and facility according to the input.
US09825461B2
A modular direct current power distribution network includes a first power distribution block including a first housing, a first main power storage device enclosed within the housing, a first plurality of device connection ports in the housing, and at least one first transistor controlling the connection from the first main power storage device to the first plurality of device connection ports, at least one external device, the at least one external device having a power exchange port electrically connected to a device connection port of the first plurality of device connection ports and an individual power storage device electrically connected to the power exchange port, and a first controller configured to sense a load sharing threshold event matching a load sharing threshold, and to modify the state of the at least one first transistor in response to the load sharing threshold condition.
US09825460B2
A cable drop compensation circuit includes a current detection circuit, a compensation judgment circuit, and a compensation circuit. The current detection circuit detects a load current supplied to a load by a DC output circuit, so as to generate a current detection signal. The compensation judgment circuit receives the current detection signal, and generates a judgment signal when judging the load current higher than a predetermined compensation value. When receiving the judgment signal, the compensation circuit generates a compensation signal. In response to the compensation signal, the DC output circuit raises an output voltage by a compensation voltage.
US09825458B2
A device is provided for intrinsically safe redundant current supply of field devices with a common current-limiting resistor in the mesh of the field device and with redundant current supply units. A current sensor can be provided in the mesh of the field device, the output signal of which sensor is connected to a controllable voltage source in the redundant current supply units.
US09825443B2
A power transfer unit is disclosed. In a first implementation of the disclosed power transfer unit, a tubular assembly of the power transfer unit includes an encapsulated elbow hinge design with a reduced profile that permits substantially off-center installation of the housings of the power transfer unit. In a second implementation of the disclosed power transfer unit, the tubular assembly includes an inverted, telescoping tubing design that does not come apart during installation and use, and in some implementations may act as a stop for a closable member.
US09825438B2
Switchgear includes a duct by which inside portions of a plurality of cable compartments are linked each other; and a gas flow direction restriction device by which high-pressure gas is flowed only in a predetermined direction in the duct when the high-pressure gas is generated at the inside of any of the cable compartments in the plurality of cable compartments; in which the high-pressure gas can be ejected from a predetermined portion of the switchgear to the outside without increasing outer dimensions of the switchgear in accordance with an internal fault in the cable compartments.
US09825422B2
An optic-microwave frequency discriminator includes: a fiber coupler receives and combines a first laser and a second laser, than the fiber coupler respectively generates and outputs a first light signal and a second light signal; a photodiode module respectively receives the first light signal and the second light signal, and converts the first light signal into a first microwave signal and converts the second light signal into a second microwave signal; a microwave phase shifter generates a shifted microwave signal by introducing a phase shift to the second microwave signal; a 90° microwave bridge combines the first microwave signal and the shifted microwave signal for generating a first bridge signal and a second bridge signal; a normalized balanced detection module generates an error signal; and a control module generates a controlling voltage signal according to the error signal for tuning a frequency of the second laser.
US09825417B2
There may be provided a laser unit including a display configured to display one or both of electric power consumed by the laser unit and electric energy consumed by the laser unit.
US09825412B2
Provided is a protective plate for at least one plug connector attached to a mounting rail, said protective plate having a substantially U-shaped basic form with a closed main surface and side surfaces angled at approximately 90° to the main surface, wherein a securing region is angled at approximately 90° to the side surfaces, said securing region having at least one hole, and wherein an abutting region is angled at approximately 90° to the side surfaces, said securing region and the corresponding abutting region being positioned approximately perpendicular to one another. The system, formed by protective plate, a mounting rail and at least one plug connector, is optimally coordinated.
US09825405B1
A push-push fixing structure includes a base, a guiding element, a flexible element and a locating element. The guiding element is disposed on the base, includes a first guiding groove, a second guiding groove and a locating portion. The first guiding groove is connected to the second guiding groove, the locating portion is located at a junction of the first guiding groove and the second guiding groove. The flexible element is disposed on the base and pressed against the guiding element. The locating element has a first end portion and second end portion opposite to each other. The first end portion is disposed on the base. The second end portion is slidably disposed in the first guiding groove and the second guiding groove of the guiding element. When the guiding element is moved by push force, the second end portion of the locating element slides along the first guiding groove and the second guiding groove, and locates at the locating portion.
US09825396B2
An electrical connector can include a male blade terminal protector that protects one or more male blade terminals from external objects before, during, and after coupling of the male connector to a female connector. The male blade terminal protector can be slidably disposed within a housing of the male connector and configured to retract when the female connector is coupled to the male connector and extend when the female connector is decoupled from the male connector. The male blade terminal protector is moveable from an extended position to a retracted position when a ledge is disengage from a catch by a ramped surface of a female housing and a retraction tab of the female housing is configured to move the male blade terminal protector from the retracted position to the extended position as the female connector is disengaged from the male connector.
US09825395B2
A protective cover is provided for a connector that is mounted to a host structure. The cover includes a metal shell having a body defined by at least one shell segment that includes a base and a support wall that extends outward from the base. The support wall includes an interior side that defines a connector pocket configured to receive a corresponding sub-segment of a cantilevered connector segment of the connector. The base of the shell segment is configured to be mounted to the host structure with the support wall extending outward from the host structure over the corresponding sub-segment of the cantilevered connector segment such that the body of the metal shell is cantilevered from the host structure around at least a portion of a circumference and along at least a portion of a length of the cantilevered connector segment to provide a metal barrier that covers at least a portion of the cantilevered connector segment.
US09825382B2
A connector (100) and assembly of the same, the connector comprises an insulative housing (1) and a plurality of contacts (2) assembled onto the insulative housing (1), the insulative housing (1) defining a mating surface (11) and a mounting surface (12) opposite to the mating surface (11). Each contact (2) including a contact portion (21) arranged in the insulative housing (1) and a mounting portion (22) locating at the mounting surface (12) and protruding sidewardly beyond said insulative housing, the mounting portion (22) defines a soldering surface (222) for being soldered onto to said printed circuit board (200), said soldering surface (222) face toward the mounting surface (12). Therefore, when the connector (100) assembled to the printed circuit board (200), we could make full use of the height space at the up and down direction of the printed circuit board (200), thus greatly reducing the height space occupied by the connector (100).
US09825380B2
An optical module includes an optical transceiver and the fastening structure wherein the optical transceiver includes a body, a plurality of first connecting legs extending along a first direction from the body, a plurality of second connecting legs extending initially from the body along the second direction perpendicular to the first direction, and successively along the first direction. The fastening structure includes a plurality of through holes through which the first connecting legs and the second connecting legs extend so as to be mounting to an external printed circuit board under said optical module.
US09825376B2
The pressure welding contact is provided with an electric wire connecting portion and a contact connecting portion. The electric wire connecting portion comprises a first fixing plate and a pressure welding piece. The pressure welding piece comprises a notched groove into which the core wire of the electric wire can be introduced. The contact connecting portion comprises a second fixing plate and an elastic piece. The second fixing plate contacts the first fixing plate. The elastic piece turns back from the base end portion of the second fixing plate. Further, the elastic piece is disposed in a state inclined upwards, towards the tip portion of the second fixing plate. The elastic piece comprises at its tip portion a contact point portion. The mating side connector can be inserted from between the second fixing plate and the elastic piece.
US09825366B2
A printed circuit board antenna and a printed circuit board are disclosed. The printed circuit board antenna includes a feeding part having at least one first branch; a coupling interdigital part having at least one second branch, where a gap is formed between the first branch and the second branch; a grounding part, where a gap is formed between the grounding part and the feeding part, a gap is formed between the grounding part and the coupling interdigital part, an opening is provided on the grounding part, and a feeding point of the feeding part extends out from the opening. The embodiments of the present invention resolve a problem of relatively low efficiency when high-frequency bandwidth of an antenna is relatively wide, implementing that efficiency meets a product requirement in an entire range of bandwidth.
US09825361B2
A circuit arrangement includes a first antenna configured to couple to an electromagnetic field from a first frequency band and a second antenna configured to couple to an electromagnetic field from a second frequency band, the second frequency band being different than the first frequency band. The first antenna is connected in series with the second antenna as an electrical supply line therefor.
US09825357B2
An electronic device may include wireless communications circuitry and an antenna assembly coupled thereto. The antenna assembly may include a substrate, an electrically conductive layer defining a ground plane carried by the substrate, and an electrically conductive patch antenna element carried by the substrate and spaced from the ground plane. The patch antenna element may have a symmetric axis dividing the patch antenna element into first and second symmetric areas, and first and second feed openings in the first and second symmetric areas, respectively. The antenna assembly may also include first and second feed pads in the first and second feed openings, respectively, and first and second feed lines extending through the substrate and respectively coupling the feed pads to the wireless communications circuitry. Spaced apart conductive shielding vias may be coupled to the ground plane and may extend through the substrate surrounding the patch antenna element.
US09825355B2
A first electronic device uses a first wireless link to connect wirelessly to an audio source device, and a second wireless link to connect to a second electronic device. In some cases, the first electronic device and the second electronic device can be worn by, or mounted to, a user. Upon receiving audio from the audio source device, the first electronic device extracts stereo channels from the received audio, and transmits at least one of the channels to the second electronic device. In some embodiments, an antenna of the first electronic device and an antenna of the second electronic device create a coaxial antenna pair. Alternately or additionally, each antenna, when worn by or mounted to a user, propagates an electric field in a direction generally normal to the user's head. In turn, this generates a creeping wave that travels along a surface, such as the surface of the user's head.
US09825344B2
A heat generating element housing device includes a first side surface, a second side surface, a first shelf plate, second shelf plates, module cases, and highly heat conductive members. The module cases are in a substantially rectangular parallelepiped shape and are fixed to the second shelf plates at the respective heights, with their longitudinal direction directed along a flow direction of the air. Each of the highly heat conductive members is fixed, with its heat transfer surface being in contact with at least one of the longitudinal side surfaces of the module case and with a side portion of the heat transfer surface being in contact with the second shelf plate.
US09825342B2
A conduit for cooling a heating element includes an inlet mouth for entry of a fresh air flow, a plurality of cooling channels, the fresh air flow dividing between the channels into a plurality of air flows to collect heat produced by the heating element, an outlet mouth for an exit of a heated air flow, the heated air flow resulting from a merger of the plurality of air flows after the heat collection, and air deflectors in the outlet mouth facing the channel outlets situated closest to an exit opening of the outlet mouth relative to the other channel outlets to prevent at least one of the plurality of air flows from exiting the cooling channels. The air deflectors extend over lengths which reduce as distances from the opening of the outlet mouth increase to guide the air flows towards the exit opening of the outlet mouth.
US09825330B2
A nonaqueous electrolyte secondary battery according to an embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode contains a negative electrode active material. A lithium insertion-extraction reaction potential of a negative electrode active material is higher than the oxidation-reduction potential of lithium by a value of 1 V or more. The nonaqueous electrolyte contains an electrolytic salt, a nonaqueous solvent, at least one hydroxyalkylsulfonic acid, and at least one sulfonate.
US09825326B2
A rechargeable battery includes a wound electrode assembly having first and second electrodes at opposite surfaces of a separator; a first case accommodating a first side of the electrode assembly and being coupled to the first electrode; a second case accommodating a second side of the electrode assembly and coupled to the second electrode; and a gasket engaged by the electrode assembly and combined at the first and second openings to seal the first and second openings.
US09825325B2
A rechargeable battery with improved safety and increased capacity of a cell including: an electrode assembly including a first electrode, a second electrode, and a separator between the first and second electrodes; a case comprising an opening configured to receive the electrode assembly; a cap assembly coupled to the sides of the opening of the case; and a lead tab connecting the first electrode to the cap assembly, wherein the first electrode includes a coating region where an active material is coated on both surfaces of a current collector, a first uncoated region where the active material is not coated on the current collector, and a second uncoated region where the active material is not coated on one surface of the current collector.
US09825315B2
A gas diffusion layer having a first major surface and a second major surface which is positioned opposite to said first major surface and an interior between said first and second major surfaces is formed. The gas diffusion layer comprises a porous carbon substrate which is directly fluorinated in the interior and is substantially free of fluorination on at least one of the first major surfaces or the second major surfaces, and preferably both surfaces. The gas diffusion layer may be formed using protective sandwich process during direct fluorination or by physically or chemically removing the C—F atomic layer at the major surfaces, for example by physical plasma etching or chemical reactive ion etching.
US09825302B1
Provided are a metal foil, a metal foil manufacturing method and a method for manufacturing an electrode using the same, in which the adhesion between the metal foil and a conductive resin layer and the coating performance of the conductive resin layer can be improved by treating the surface of the metal foil. The metal foil comprises: a metal base substrate; a surface treatment layer formed on at least one surface of the metal base substrate by treating the surface of the metal base substrate; and a conductive resin layer applied to the surface of the surface treatment layer, wherein the surface treatment layer has a surface energy of 34-46 dyne/cm.
US09825297B2
A negative-electrode active material for a sodium-ion secondary battery contains a porous carbon material which has a plurality of open pores that extend through to the surface, a plurality of closed pores that do not extend through to the surface, and a solid made of carbon material. The distance between (002) planes of the solid portion is not less than 0.340 nm and not more than 0.410 nm. The plurality of closed pores account for a volume ratio of not less than 0% and not more than 10% with respect to a total volume of the plurality of open pores, the plurality of closed pores, and the solid portion. The plurality of open pores account for a volume ratio of not less than 0% and not more than 50% with respect to a total volume of the plurality of open pores, the plurality of closed pores, and the solid portion.
US09825292B2
A process for producing lithium titanate which includes the steps of synthesizing a lithium titanate hydrate intermediate via aqueous chemical processing, and thermally treating the lithium titanate hydrate intermediate to produce the lithium titanate. The lithium titanate hydrate is preferably (Li1.81H0.19)Ti2O<<2H2O. The lithium titanate is preferably Li4Ti5O12 (LTO). Synthesizing the lithium titanate hydrate intermediate may include mixing a titanium-containing compound with a lithium-containing compound in a solvent to produce a lithium-titanium precursor mixture. Preferably the titanium-containing compound includes titanium tetrachloride TiCl4. Also, a lithium titanate obtained according to the process and a lithium battery including the lithium titanate.
US09825287B2
An active material for an electrochemical device wherein a surface of the active material is modified by a surface modification agent, wherein the surface modification agent is an organometallic compound.
US09825278B2
A high voltage battery for vehicles includes an anode tab that is divided into a first part placed near a battery cell and a second part placed near a terminal. A first part extension extends from the first part and is fixed to a lower pouch. A second part extension extends from the second part, comes into contact with the first part extension, and is fixed at an upper end thereof to an upper pouch. An cathode extension extends from a cathode tab and is spaced apart from the upper end of the second part extension. A cushion is interposed between the second part extension and the cathode extension, with a reference level of pressure formed in the cushion.
US09825266B2
A battery pack includes at least one battery module, a housing accommodating the at least one battery module therein, a controller to control the at least one battery module, a partition positioned between the controller and the at least one battery module, and a connector at least partially passing through the partition, the connector electrically connecting the at least one battery module with the controller.
US09825263B2
[Object] To prevent elements in a pack main body and an electronic apparatus from malfunctioning even if the pack main body having an outer shape line-symmetric in up and down directions and left- and right-hand directions is incorrectly attached.[Solving Means] There are provided a pack main body 11 installing the battery cell 29 and a terminal portion 12 constituted of a plus terminal 12a, a minus terminal 12b, and a control terminal 12c that are provided on a front surface 11c of the pack main body 11. The plus terminal 12a, the minus terminal 12b, and the control terminal 12c are provided so as to be deviated to one end portion 11f in a width direction of the front surface 11c and arranged in an order of the plus terminal 12a, the control terminal 12c, and the minus terminal 12b. The sizes of the control terminal 12c, the plus terminal 12a, and the minus terminal 12b are increased in an order of the control terminal 12c, the plus terminal 12a, and the minus terminal 12b such that the control terminal 12c is formed to be the smallest. While being attachable to various electronic apparatuses, the pack main body can ensure a sufficient mechanical strength.
US09825262B2
Disclosed is an organic light emitting display apparatus in which an anode electrode, an organic emission layer, a cathode electrode, and an auxiliary electrode connected to the cathode electrode and disposed on the same layer as that of the anode electrode are disposed in an active area of the substrate, a signal pad and a pad electrode connected to the signal pad and covering a top of the signal pad are disposed in a pad area of the substrate, and a top of the pad electrode has lower oxidation rate than the top of the signal pad.
US09825259B2
An organic light emitting diode display device, including a flexible substrate; pixels on the flexible substrate, the pixels including an organic emission layer; a pixel definition layer between the pixels, the pixel definition layer including openings; an encapsulation layer covering the pixels; and a conductive light shielding member on the encapsulation layer, the conductive light shielding member not overlapped with the pixels, and overlapped with the pixel definition layer.
US09825246B2
Various embodiments may relate to a process for producing an optoelectronic component. In the process, a carrier is provided. A first electrode is formed upon the carrier. An optically functional layer structure is formed upon the first electrode. A second electrode is formed upon the optically functional layer structure. At least one of the two electrodes is formed by disposing electrically conductive nanowires on a surface on which the corresponding electrode is to be formed, and by heating the nanowires in such a way that they plastically deform.
US09825234B2
An organic light-emitting diode (OLED) includes a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode. The organic layer includes a compound represented by one of Formula 1 or Formula 2, and a metallic complex.
US09825218B2
A device or class of devices that provides a mechanism for controlling charge current flow in transistors that employs collective magnetic effects to overcome voltage limitations associated with single-particle thermionic emission as in conventional MOSFETs. Such a device may include two or more magnetic stacks with an easy-in-plane ferromagnetic film sandwiched between oppositely magnetically oriented perpendicular magnetization anisotropy (PMA) ferromagnets. Each stack includes two non-magnetic layers separating the easy-plane ferromagnetic film from the PMA layers. Charge current flow through one of these stacks controls the current-voltage negative differential resistance characteristics of the second stack through collective magnetic interactions. This can be exploited in a variety of digital logic gates consuming less energy than conventional CMOS integrated circuits. Furthermore, the easy-in-plane magnetic films may be subdivided into regions coupled through exchange interactions and the in-plane fixed magnetic layers in the input magnetic stacks can be used in non-volatile logic and memory.
US09825203B2
A light emitting diode chip includes an epitaxial layer with a plurality of recess portions and protrusion portions over the top layer; a light transmission layer, located between top ends of adjacent protrusion portions and forming holes with the recess portions. The light transmission layer has a horizontal dimension larger than a width of the top ends of two adjacent protrusion portions, and serves as current blocking layer; a current spreading layer covering the surface of the light transmission layer and the surface of an epitaxial layer of a non-mask light transmission layer. As the refractive index of the light transmission layer is between those of the epitaxial layer and the hole, indicating a difference of refractive index between the light transmission layer and the epitaxial layer, the probability of scattering generated when light from a luminescent layer emits upwards can be increased, thus avoiding light absorption by electrodes and improving light extraction efficiency.
US09825192B2
Manufacture for an improved stacked-layered thin film solar cell. Solar cell has reduced absorber thickness and an improved back contact for Copper Indium Gallium Selenide solar cells. The back contact provides improved reflectance particularly for infrared wavelengths while still maintaining ohmic contact to the semiconductor absorber. This reflectance is achieved by producing a back contact having a highly reflecting metal separated from an absorbing layer with a dielectric layer.
US09825190B2
A solar cell and a method for manufacturing the same are discussed. The solar cell includes a substrate of a first conductive type, an emitter region of a second conductive type opposite the first conductive type, the emitter region forming a p-n junction along with the substrate, a passivation layer which is positioned on a back surface of the substrate and has a plurality of via holes exposing portions of the back surface of the substrate, a first electrode connected to the emitter region, and a second electrode which is positioned on a back surface of the passivation layer and is connected to the substrate through the plurality of via holes.
US09825189B2
A photosensitive pixel with gain stage is disclosed. The photosensitive pixel with gain stage may receive an input light stimulus and output a corresponding output voltage in response to the input light stimulus. The output voltage may correspond linearly to the magnitude of the input light stimulus over a linear operating region and logarithmically to the magnitude of the input light stimulus over a logarithmic operating region. In this manner, the photosensitive pixel with gain stage may be both sensitive to input light stimuli over the linear operating region and may exhibit dynamic range enabling non-saturated response to input light stimuli over the logarithmic operating region.
US09825184B2
According to one embodiment, an inter-electrode insulating film interposed between a floating gate electrode and a control gate electrode includes a lower layer insulating film disposed on a side closer to the floating gate electrode, an upper layer insulating film disposed on a side closer to the control gate electrode, and an intermediate insulating film interposed between the lower layer insulating film and the upper layer insulating film, wherein the intermediate insulating film contains a first element, and the lower layer insulating film contains the first element and a second element, such that a ratio of the first element relative to the second element is larger on a side closer to the intermediate insulating film than on a side closer to the floating gate electrode.
US09825179B2
A novel oxide semiconductor is provided. An oxide semiconductor contains In, an element M (M represents Al, Ga, Y, or Sn), and Zn. The oxide semiconductor has little characteristics variation and structure change and has high electron mobility in the case where the atomic ratio of In to M and Zn in the oxide semiconductor ranges from 4:2:3 to 4:2:4.1 or is a neighborhood thereof.
US09825175B2
A thin film transistor and a fabrication method thereof, an array substrate and a display device are provided. The thin film transistor includes: an active layer, a source-drain metal layer and a diffusion blocking layer located between the active layer and the source-drain metal layer, wherein, the source-drain metal layer includes a source electrode and a drain electrode; the diffusion blocking layer includes a source blocking part corresponding to a position of the source electrode and a drain blocking part corresponding to a position of the drain electrode; and the diffusion blocking layer is doped with different concentrations of nitrogen from a side close to the source-drain metal layer to a side close to the active layer.
US09825173B2
A fin-type field-effect transistor (FinFET) device includes a plurality of fins formed over a substrate. The semiconductor device further includes a dielectric layer filled in a space between each fin and over a first portion of the plurality of fins and a dielectric trench formed in the dielectric layer. The dielectric trench has a vertical profile. The semiconductor device further includes a second portion of the plurality of fins recessed and exposed in the dielectric trench. The second portion of the plurality of fins have a rounded-convex-shape top profile.
US09825167B2
In characteristic test measurements of double-gate-in-trench p-channel power MOSFETs each having a p+ polysilicon gate electrode and a p+ field plate electrode in a trench, which were fabricated according to common design techniques, it has been found that, under conditions where a negative gate bias is applied continuously at high temperature with respect to the substrate, an absolute value of threshold voltage tends to increase steeply after the lapse of a certain period of stress application time. To solve this problem, the present invention provides a p-channel power MOSFET having an n-type polysilicon linear field plate electrode and an n-type polysilicon linear gate electrode in each trench part thereof.
US09825165B2
A charge-compensation semiconductor device includes a semiconductor body having a first surface, a lateral edge delimiting the semiconductor body in a horizontal direction substantially parallel to the first surface, an active area, a peripheral area arranged between the active area and the lateral edge, a drift region, first compensation regions forming respective first pn-junctions with the drift region, and second compensation regions extending from the first surface into the drift region and forming respective second pn-junctions with the drift region. The first compensation regions form in the active area a lattice comprising a first base vector having a first length. The second compensation regions have, in a horizontal direction parallel to the first surface, a horizontal width which decreases with an increasing vertical distance from the first surface and with a decreasing horizontal distance from the edge.
US09825163B2
Super-junction MOSFETs by trench fill system requires void-free filling epitaxial growth. This may require alignment of plane orientations of trenches in a given direction. Particularly, when column layout at chip corner part is bilaterally asymmetrical with a diagonal line between chip corners, equipotential lines in a blocking state are curved at corner parts due to column asymmetry at chip corner. This tends to cause points where equipotential lines become dense, which may cause breakdown voltage reduction. In the present invention, in power type semiconductor active elements such as power MOSFETs, a ring-shaped field plate is disposed in chip peripheral regions around an active cell region, etc., assuming a nearly rectangular shape. The field plate has an ohmic-contact part in at least a part of the portion along the side of the rectangle. However, in the portion corresponding to the corner part of the rectangle, an ohmic-contact part is not disposed.
US09825161B2
Provided is a logical operation element that performs logical operations on three or more inputs using a single unique device. The logical operation element 30 is provided with an electrode 5A and the other electrode 5B that are provided to have a nanogap, a metal nanoparticle 7 arranged between the electrode 5A and the other electrode 5B in insulated state, and a plurality of gate electrodes 5C, 5D, 11, 11A, 11B for adjusting a charge of the metal nanoparticle 7. Electric current that flows between the electrode 5A and the other electrode 5B is controlled in accordance with the voltage applied to three or more of the gate electrodes 5C, 5D, 11, 11A, 11B.
US09825158B2
An IGBT is provided having a first gate unit having first trench gates with first conductive layers and planar gates with second conductive layers. A second gate unit having a second trench gates may be connected to the emitter electrode, with the first and second conductive layers forming a first shape closed in itself and enclosing the second gate unit. Third trench gates are arranged between a planar gate and the second gate unit such that first and third trench gates are connected and form a second shape closed in itself by which the second gate unit is enclosed. P+ doped bars below the planar gale contact the emitter electrode with each third trench gate separating a bar and a planar gate electrode from the second gate unit, with a p doped base layer separating the second gate unit from the enclosing second shape.
US09825157B1
The present disclosure relates to semiconductor structures and, more particularly, to a heterojunction bipolar transistor with a stress component and methods of manufacture. The heterojunction bipolar transistor includes a collector region, an emitter region and a base region. Stress material is formed within a trench of a substrate and surrounding at least the collector region and the base region.
US09825154B2
The tunneling channel of a field effect transistor comprising a plurality of tunneling elements contacting a channel substrate. Applying a source-drain voltage of greater than a turn-on voltage produces a source-drain current of greater than about 10 pA. Applying a source-drain voltage of less than a turn-on voltage produces a source-drain current of less than about 10 pA. The turn-on voltage at room temperature is between about 0.1V and about 40V.
US09825151B2
The present invention suggests a substrate manufacturing method and a manufacturing method of a semiconductor device comprising: providing a SOI structure having an insulation layer and a silicon layer laminated on a substrate; laminating to form a silicon germanium layer and a capping silicon layer on the SOI structure; implementing oxidation process at two or more temperatures and heat treatment process at least once during the oxidation process to form a germanium cohesion layer and a silicon dioxide layer; and removing the silicon dioxide layer.
US09825142B2
Methods of fabricating semiconductor devices include forming a first impurity region in a substrate by implanting a first impurity of a first conductivity type in a cell region and a peripheral region of the substrate to a first target depth from a top surface of the substrate; forming a second impurity region in the cell region and the peripheral region by implanting a second impurity of the first conductivity type into the cell region and the peripheral region to a second target depth that is smaller than the first depth from the top surface of the substrate; forming a cell transistor with a channel in the cell region, wherein the first impurity region forms the channel of the cell transistor; and forming a peripheral transistor with a channel in the peripheral region, wherein the second impurity region forms the channel of the peripheral transistor.
US09825136B2
A semiconductor component includes an element composed of a conductive material, which is arranged above a surface of a semiconductor substrate. The element includes an element region not adjoined by any electrical contacts to an overlying or underlying electrically conductive plane. In this case, a surface of the element facing away from the semiconductor substrate is patterned with elevations or depressions and a surface of the element region facing the semiconductor substrate is patterned to a lesser extent or is not patterned.
US09825133B2
A semiconductor device may include a gate electrode, an insulating layer, a first channel member, and a second channel member. The insulating layer may overlap the gate electrode. The first channel member may be positioned between the gate electrode and the insulating layer. The second channel member may be positioned between the gate electrode and the first channel member. A semiconductor material of the second channel member may be different from a semiconductor material of the first channel member.
US09825115B2
An organic light emitting diode display device comprises a substrate including a pixel region, the pixel region including a first portion and a second portion, a first electrode in the second portion of the pixel region, a bank layer separating the first portion and the second portion of the pixel region, an emitting layer in the second portion of the pixel region but not in the first portion of the pixel region, an emission assisting layer extending in the first portion of the pixel region and in the second portion of the pixel region, the emission assisting layer in the first portion of the pixel region being more conductive than the emission assisting layer in the second portion of the pixel region, and a second electrode on the emission assisting layer in the first portion of the pixel region and in the second portion of the pixel region.
US09825114B2
An organic light-emitting display apparatus, including a substrate including a display region and a fan-out region outside the display region; a plurality of pixel electrodes in the display region of the substrate; a plurality of first signal lines connected electrically to the pixel electrodes in the display region in one direction and constituting a plurality of first line portions in the fan-out region; a plurality of second signal lines connected electrically to the pixel electrodes in the display region to intersect the first signal lines and constituting a plurality of second line portions in the fan-out region; and a dummy pattern between the first line portions.
US09825113B2
The present invention provides a double-sided display substrate and a manufacturing method thereof and a display device. The double-sided display substrate includes several sub-pixel units, the sub-pixel unit includes a front side light-emitting layer provided for front side displaying, a back side light-emitting layer provided for back side displaying, a pixel electrode layer, a common electrode layer, and a driving transistor, and the front side light-emitting layer and the back side light-emitting layer are interposed between a corresponding pixel electrode layer and the common electrode layer, respectively, the common electrode layer corresponding to the back side light-emitting layer and/or the front side light-emitting layer is disposed in the same layer as a gate electrode layer of the driving transistor. According to the double-sided display substrate, quick manufacture and spread of the double-sided display substrate are realized.
US09825111B2
A method of forming an organic light emitting diode (OLED) display device is discussed. The method according to an embodiment includes forming a first bank pattern on a substrate and in an emission region and a non-emission region; forming a second bank pattern on the first bank pattern; forming an organic emission layer on the substrate in the emission region; and forming a planarization film on the substrate to include an opening under the first and second bank patterns in the non-emission region. The second bank pattern is on the first bank pattern in the non-emission region, and the first bank pattern is in the opening of the planarization film in the non-emission region.
US09825100B2
According to one embodiment, a nonvolatile semiconductor memory device includes a plurality of conducting layers, a semiconductor layer, a variable resistive element, and a first wiring. The plurality of conducting layers are laminated in a first direction at predetermined pitches. The conducting layers extend in a second direction. The second direction is along the surface of the substrate. The semiconductor layer extends in the first direction. The variable resistive element is disposed at an intersection point between the plurality of conducting layers and the semiconductor layer. The first wiring is opposed to an inside of the semiconductor layer via a gate insulating film. The first wiring extends in the first direction. The semiconductor layer at least includes a first part and a second part. The first part is upward of the conducting layer on a lowermost layer. The second part is downward of the first part. The first part has a first length in a third direction. The third direction is intersecting the first direction and the second direction, and is along the surface of the substrate. The second part has a second length in the third direction. The second length is shorter than the first length.
US09825095B2
An insulating layer is deposited over a transistor structure. The transistor structure comprises a gate electrode over a device layer on a substrate. The transistor structure comprises a first contact region and a second contact region on the device layer at opposite sides of the gate electrode. A trench is formed in the first insulating layer over the first contact region. A metal-insulator phase transition material layer with a S-shaped IV characteristic is deposited in the trench or in the via of the metallization layer above on the source side.
US09825094B2
Embodiments are directed to a method of forming portions of a fin-type field effect transistor (FinFET) device. The method includes forming at least one source region having multiple sides, forming at least one drain region having multiple sides, forming at least one channel region having multiple sides, forming at least one gate region around the multiple sides of the at least one channel region and forming the at least one gate region around the multiple sides of the at least one drain region.
US09825090B2
A light-emitting structure includes a first epitaxial unit; a second epitaxial unit disposed next to the first epitaxial unit; a crossover metal layer including a first protruding portion laterally overlapping the first epitaxial unit and the second epitaxial unit wherein the first protruding portion is electrically connected with the first epitaxial unit and the second epitaxial unit; a conductive connecting layer disposed below the first epitaxial unit and the second epitaxial unit and surrounding the first protruding portion; and an electrode arranged on the conductive connecting layer.
US09825086B2
An image pickup apparatus includes a first pixel electrode connected to a pixel circuit, a second pixel electrode adjoining the first pixel electrode and connected to the pixel circuit, a photoelectric conversion film continuously covering the first and second pixel electrodes, and an opposite electrode facing the first and second pixel electrodes via the film. The film includes a recessed portion recessed toward a portion between the first and second pixel electrodes on a surface opposite to the first and second pixel electrodes. The depth of the recessed portion is greater than the first pixel electrode's thickness, and a distance from the first pixel electrode to the recessed portion is greater than a distance from the first pixel electrode to the second pixel electrode. The opposite electrode is provided continuously along the surface via the film, and the recessed portion surrounds a part of the opposite electrode.
US09825085B2
A semiconductor image sensor includes a substrate having a first side and a second side that is opposite the first side. An interconnect structure is disposed over the first side of the substrate. A plurality of radiation-sensing regions is located in the substrate. The radiation-sensing regions are configured to sense radiation that enters the substrate from the second side. A buffer layer is disposed over the second side of the substrate. A plurality of elements is disposed over the buffer layer. The elements and the buffer layer have different material compositions. A plurality of light-blocking structures is disposed over the plurality of elements, respectively. The radiation-sensing regions are respectively aligned with a plurality of openings defined by the light-blocking structures, the elements, and the buffer layer.
US09825083B2
Disclosed is an optical detector in which a boundary line BY defining an edge of a semiconductor region 14 is covered with signal read wiring E3 and a capacitor is configured between the semiconductor region 14 and the signal read wiring E3. High frequency components peak components of a carrier are quickly extracted to the outside via the capacitor, but the signal read wiring E3 covers the boundary line BY so that a semiconductor potential in the vicinity of the boundary line is stabilized and an output signal is stabilized.
US09825073B2
An image sensor includes a photodiode disposed in semiconductor material to accumulate image charge in response to light directed through a back side of the semiconductor material. A scattering structure is disposed proximate to the front side of the semiconductor material such that the light that is directed into the semiconductor material through the back side is scattered back through the photodiode. A deep trench isolation structure is disposed in the semiconductor material that isolates the photodiode and defines an optical path such that the light that is scattered back through the photodiode in the optical path is totally internally reflected by the DTI. An antireflective coating is disposed on the back side of the semiconductor material and totally internally reflects the light scattered by the scattering structure to confine the light to remain in the optical path until it is absorbed.
US09825069B2
An array substrate manufacturing method, including: forming an active layer of a thin film transistor, in which photoresist with a partial thickness at a location corresponding to a channel area between source/drain electrodes of the thin film transistor on the active layer is reserved; forming a source/drain metal layer, and further forming source/drain electrodes; lifting off the photoresist with the partial thickness on the channel area between the source/drain electrodes. The array substrate manufacturing method can avoid damaging the metal oxide layer in the etching process for source/drain electrodes, and lower production cost, simplify processes, and increase yield and product profit.
US09825067B2
A display device including a pixel electrode portion electrically connected to a thin film transistor; a semiconductor light emitting device configured to emit light to form an individual pixel, and including a conductive electrode; a conductive adhesive layer adhered to the semiconductor light emitting device, and configured to electrically connect the pixel electrode portion to the conductive electrode; and a buffer layer including an elastic material to protect the thin film transistor, and disposed between the thin film transistor and the conductive adhesive layer.
US09825065B2
A substrate including gate wirings including gate line and a gate electrode disposed on the substrate, a storage line disposed on the same layer as the gate wirings, a gate insulating layer disposed on the gate wirings and the storage line, an oxide semiconductor layer pattern disposed on the gate insulating layer, data wirings including a data line crossing the gate line, a source electrode disposed on one side of the oxide semiconductor layer pattern, and a drain electrode disposed on another side of the oxide semiconductor layer, and an etch stopper including a first etch stopper portion disposed between the storage line and the data line and partially overlapping both the data line and the storage line.
US09825057B2
To provide a display device in which plural kinds of circuits are formed over one substrate and plural kinds of transistors corresponding to characteristics of the plural kinds of circuits are provided. The display device includes a pixel portion and a driver circuit that drives the pixel portion over one substrate. The pixel portion includes a first transistor including a first oxide semiconductor film. The driver circuit includes a second transistor including a second oxide semiconductor film. The first oxide semiconductor film and the second oxide semiconductor film are formed over one insulating surface. A channel length of the first transistor is longer than a channel length of the second transistor. The channel length of the first transistor is greater than or equal to 2.5 micrometer.
US09825050B2
A semiconductor device whose performance is improved is disclosed. In the semiconductor device, an offset spacer formed in a memory cell is formed by a laminated film of a silicon oxide film and a silicon nitride film, and the silicon oxide film is particularly formed to directly contact the sidewall of a memory gate electrode and the side end portion of a charge storage film; on the other hand, an offset spacer formed in a MISFET is formed by a silicon nitride film. Particularly in the MISFET, the silicon nitride film directly contacts both the sidewall of a gate electrode and the side end portion of a high dielectric constant film.
US09825048B2
A 3D memory has multiple memory layers stacked on top of a substrate. Word lines in different memory layers are connected respectively to different columns of contact pads in the substrate directly under the multiple memory layers. The connection is accomplished by creating vertical shifts above each contact pad and creating a vertical word line VIA connecting to the contact pad. For a given memory layer and its column of vertical word line VIAs, an auxiliary vertical shaft down to the memory layer is formed between each vertical word line VIA and an adjacent word line. The auxiliary vertical shaft is contiguous with the vertical shift allowing access to the vertical word line VIA. The auxiliary vertical shaft also enables excavating a lateral space between the word line and the vertical word line VIA. Filling the space with a conductive material completes a conductive path from the word line to the contact pad.
US09825044B2
The method for preventing epitaxial growth in a semiconductor device begins with cutting a set of long fins into a set of fins of a FinFET structure, the set of fins having respective cut faces of a set of cut faces located at respective fin ends of a set of fin ends. A photoresist layer is patterned over the set of fin ends of the set of fins of the FinFET structure. The photoresist pattern over the set of fin ends differs from the photoresist pattern over other areas of the FinFET structure as the photoresist pattern over the set of fin ends protects the first dielectric material at the set of fin ends. A set of dielectric blocks is formed at the set of fin ends, wherein each of the dielectric blocks covers at least one cut face. The set of dielectric blocks prevents epitaxial growth at the set of fin ends in a subsequent epitaxial growth step.
US09825042B2
In a conventional DRAM, when the capacitance of a capacitor is reduced, an error of reading data easily occurs. A plurality of cells are connected to one bit line MBL_. Each cell includes a sub bit line SBL_n_m and 4 to 64 memory cells (a memory cell CL_n_m_1 or the like). Further, each cell includes selection transistors STr1_n_m and STr2_n_m and an amplifier circuit AMP_n_m that is a complementary inverter or the like is connected to the selection transistor STr2_n_m. Since parasitic capacitance of the sub bit line SBL_n_m is sufficiently small, potential change due to electric charge in a capacitor of each memory cell can be amplified by the amplifier circuit AMP_n_m without an error, and can be output to the bit line.
US09825033B2
An integrated circuit device includes a substrate including a first region and a second region, a first transistor in the first region, the first transistor being an N-type transistor and including a first silicon-germanium layer on the substrate, and a first gate electrode on the first silicon-germanium layer, and a second transistor in the second region and including a second gate electrode, the second transistor not having a silicon-germanium layer between the substrate and the second gate electrode.
US09825032B1
Methods of forming a VFET SRAM or logic device having a sub-fin level metal routing layer connected to a gate of one transistor pair and to the bottom S/D of another transistor pair and resulting device are provided. Embodiments include pairs of fins formed on a substrate; a bottom S/D layer patterned on the substrate around the fins; conformal liner layers formed over the substrate; a ILD formed over a liner layer; a metal routing layer formed between the pairs of fins on the liner layer between the first pair and on the bottom S/D layer between at least the second pair, an upper surface formed below the active fin portion; a GAA formed on the dielectric spacer around each fin of the first pair; and a bottom S/D contact xc or a dedicated xc formed on the metal routing layer adjacent to the GAA or through the GAA, respectively.
US09825025B2
A semiconductor device includes a first drain region that is made primarily of SiC, a drift layer, a channel region, a first source region, a source electrode that is formed on the first source region, a second drain region that is connected to the first source region, a second source region that is formed separated from the second drain region, a first floating electrode that is connected to the second source region and to the channel region, first gate electrodes, and a second gate electrode that is connected to the first gate electrodes.
US09825019B1
A semiconductor device includes a semiconductor layer of a first conductivity type, and first and second electrodes on the layer. A first region of the first type is between the layer and the first electrode and contacting the first electrode. A second region of a second conductivity type is between the layer and the second electrode. A third region of the second type is connected to the second electrode, between the first and second regions, and between the layer and the second electrode. A fourth region of the first type is between the second region and the second electrode and contacting the second electrode. A fifth region of the second type is between the layer and the second region and has an impurity concentration greater than the second region and the third region. A sixth region of the first type is between the second region and the third region.
US09825013B2
A light emitting device array including a circuit substrate and a plurality of device layers is provided. The circuit substrate includes a plurality of bonding pads and a plurality of conductive bumps located over the bonding pads. The device layers are capable of emitting different colored lights electrically connected with the circuit substrate through the conductive bumps and the bonding pads. The device layers capable of emitting different colored lights have different thicknesses and the conductive bumps bonded with the device layers capable of emitting different colored lights have different heights such that top surfaces of the device layers capable of emitting different colored lights are located on a same level of height.
US09825010B2
A stacked chip package structure includes a first chip, pillar bumps, a first encapsulant, a first redistribution layer, a second chip, a second encapsulant, a second redistribution layer and a through via. The pillar bumps are disposed on a plurality of first pads of the first chip respectively. The first encapsulant encapsulates the first chip and exposes the pillar bumps. The first redistribution layer is disposed on the first encapsulant and electrically connects the first chip. The second chip is disposed on the first redistribution layer. The second encapsulant encapsulates the second chip. The second redistribution layer is disposed on the second encapsulant and electrically coupled to the second chip. The through via penetrates the second encapsulant and electrically connects the first redistribution layer and the second redistribution layer.
US09825007B1
A chip package structure is provided. The chip package structure includes a first chip, a second chip, and a third chip. The second chip is between the first chip and the third chip. The chip package structure includes a first molding layer surrounding the first chip. The chip package structure includes a second molding layer surrounding the second chip. The chip package structure includes a third molding layer surrounding the third chip, the first molding layer, and the second molding layer.
US09825006B2
An electronic component device includes a first electronic component, a second electronic component disposed on and connected to the first electronic component, a first underfill resin filled between the first electronic component and the second electronic component, the first underfill resin having a base part arranged around the second electronic component and an alignment mark formed on an upper surface of the base part, a third electronic component disposed on and connected to the second electronic component, and a second underfill resin filled between the second electronic component and the third electronic component.
US09825004B2
A semiconductor device includes a package interface including N numbers of first group of data balls which are disposed on a first side thereof, N numbers of second group of data balls which are disposed on a second side thereof, and M numbers of command/address balls which are disposed between the first side and the second side; a first semiconductor chip which is stacked on the first side over the package interface, and includes 2N numbers of first group of data pads and M numbers of first command/address pads; and a second semiconductor chip which is stacked on the second side over the package interface, and includes 2N numbers of second group of data pads and M numbers of second command/address pads.
US09824997B2
A die package having lead structures connecting to a die that provide for electromagnetic interference reductions. Mixed impedance leads connected to the die have a first lead with a first metal core, a dielectric layer surrounding the first metal core, and first outer metal layer connected to ground; and a second lead with a second metal core, and a second dielectric layer surrounding the second metal core, and a second outer metal layer connected to ground. Each lead reducing susceptibility to EMI and crosstalk.
US09824996B2
A semiconductor device includes a header, a semiconductor chip fixed to the header constituting a MOSFET, and a sealing body of insulating resin which covers the semiconductor chip, the header and the like, and further includes a drain lead contiguously formed with the header and projects from one side surface of the sealing body, and a source lead and a gate lead which project in parallel from one side surface of the sealing body, and wires which are positioned in the inside of the sealing body and connect electrodes on an upper surface of the semiconductor chip and the source lead and the gate lead, with a gate electrode pad arranged at a position from the gate lead and the source lead farther than a source electrode pad.
US09824989B2
An embodiment is a package including a molding compound laterally encapsulating a chip with a contact pad. A first dielectric layer is formed overlying the molding compound and the chip and has a first opening exposing the contact pad. A first metallization layer is formed overlying the first dielectric layer, in which the first metallization layer fills the first opening. A second dielectric layer is formed overlying the first metallization layer and the first dielectric layer and has a second opening over the first opening. A second metallization layer is formed overlying the second dielectric layer and formed in the second opening.
US09824976B1
In some examples, a circuit package further includes an insulating layer and a first transistor extending through the insulating layer, where the first transistor includes a first control terminal on a top side of the insulating layer, a first source terminal on the top side of the insulating layer, and a first drain terminal on a bottom side of the insulating layer. The circuit package includes a second transistor extending through the insulating layer, where the second transistor includes a second control terminal on the top side of the insulating layer, a second source terminal on the bottom side of the insulating layer, and a second drain terminal on the top side of the insulating layer.
US09824974B2
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
US09824965B2
An isolation device for isolating a first signal of a first circuit from a second circuit disclosed. The isolation device may have a substrate and a plurality of metal layers disposed on the substrate. The plurality of metal layers have a topmost metal layer disposed furthest away from the substrate and a first interconnect metal layer formed nearest to the substrate. The first interconnect metal layer is disposed at a first distance away from the substrate, whereas the topmost metal layer is disposed at an isolation distance away from a first adjacent metal layer formed nearest to the topmost metal layer. A portion of the topmost metal layer forms a first plate. The first plate is configured to transmit the first signal from the first circuit to a second plate that is connected to the second circuit, but electrically isolated from the first plate.
US09824959B2
A semiconductor device having a leadframe including a pad (101) surrounded by elongated leads (110) spaced from the pad by a gap (113) and extending to a frame, the pad and the leads having a first thickness (115) and a first and an opposite and parallel second surface; the leads having a first portion (112) of first thickness near the gap and a second portion (111) of first thickness near the frame, and a zone (114) of reduced second thickness (116) between the first and second portions; the second surface (112a) of the first lead portions is coplanar with the second surface (111a) of the second portions. A semiconductor chip (220) with a terminal is attached the pad. A metallic wire connection (230) from the terminal to an adjacent lead includes a stitch bond (232) attached to the first surface of the lead.
US09824956B2
A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
US09824955B2
An ESD protection device including a Si substrate with an ESD protection circuit formed at the surface of the substrate; pads formed on the Si substrate; a rewiring layer opposed to the surface of the Si substrate, which includes terminal electrodes electrically connected to the pads. The rewiring layer includes a SiN protection film formed on the surface of the Si substrate to cover parts of the pads except regions in contact with openings (contact holes) formed in a resin layer, and the resin layer that is lower in dielectric constant than the SiN protection film, and formed between the SiN protection film and the terminal electrodes. Thus, provided is a semiconductor device which can reduce the generation of parasitic capacitance, and eliminates variation in parasitic capacitance generated.
US09824954B2
An integrated circuit device comprises N stacked first integrated circuit chips each of which includes a first circuit and N stacked second integrated circuit chips each of which includes a second circuit. The N stacked second integrated circuit chips are stacked on the N stacked first integrated circuit chips. A first and second integrated circuit chips at symmetric positions with respect to a reference surface are paired. Each of the first and second integrated circuit chips include connection terminals for connecting the first circuit of the first integrated circuit chip and the second circuit of the second integrated circuit chip in the pair, and through electrodes each penetrating an inside of the chip. The connection terminals and through electrodes are arranged to be symmetric with respect to the reference surface.
US09824950B2
A semiconductor device according to the invention includes an insulating substrate including an insulating plate, a circuit pattern that is formed on a front surface of the insulating plate, and a radiator plate that is fixed to a rear surface of the insulating plate, a semiconductor chip that is fixed to the circuit pattern, an external lead terminal that is connected to a surface electrode of the semiconductor chip through a wiring line, a molding resin that covers the insulating substrate, the semiconductor chip, the wiring line, and the external lead terminal such that a rear surface of the radiator plate and a portion of the external lead terminal are exposed, and an anchor layer including a stripe-shaped concave portion which is formed in the circuit pattern by laser beam irradiation.
US09824937B1
A method for semiconductor processing includes forming a first dielectric layer comprising an N-type dopant over a first plurality of fins extending above a first region of a substrate, forming a second dielectric layer comprising a P-type dopant over the first plurality of fins and a second plurality of fins extending above a second region of the substrate, the second dielectric layer overlying the first dielectric layer, and forming an isolation layer between adjacent ones of the first plurality of fins, and between adjacent ones of the second plurality of fins. The method further includes performing an implantation process using a first dopant, the implantation process changing an etching rate of the isolation layer, and recessing the isolation layer, the first dielectric layer, and the second dielectric layer, where after the recessing, the first and the second plurality of fins extend above an upper surface of the isolation layer.
US09824930B2
A method of fabricating advanced node field effect transistors using a replacement metal gate process. The method includes dopant a high-k dielectric directly or indirectly by using layers composed of multi-layer thin film stacks, or in other embodiments, by a single blocking layer. By taking advantage of unexpected etch selectivity of the multi-layer stack or the controlled etch process of a single layer stack, etch damage to the high-k may be avoided and work function metal thicknesses can be tightly controlled which in turn allows field effect transistors with low Tinv (inverse of gate capacitance) mismatch.
US09824929B2
A semiconductor device includes a n-type gate structure over a first semiconductor fin, in which the n-type gate structure is fluorine incorporated and includes a n-type work function metal layer overlying the first high-k dielectric layer. The n-type work function metal layer includes a TiAl (titanium aluminum) alloy, in which an atom ratio of Ti (titanium) to Al (aluminum) is in a range substantially from 1 to 3. The semiconductor device further includes a p-type gate structure over a second semiconductor fin, in which the p-type gate structure is fluorine incorporated includes a p-type work function metal layer overlying the second high-k dielectric layer. The p-type work function metal layer includes titanium nitride (TiN), in which an atom ratio of Ti to N (nitrogen) is in a range substantially from 1:0.9 to 1:1.1.
US09824928B2
A semiconductor device may include a first-type substrate. The semiconductor device may further include a second-type well configured to form a PN junction with the first-type substrate. The semiconductor device may further include a diode component configured to form a diode with the second-type well. The diode may be connected to the PN junction in a reverse series connection. The second-type may be N-type if the first-type is P-type, and wherein the second-type may be P-type if the first-type is N-type.
US09824918B2
A method of manufacturing a semiconductor device includes providing a semiconductor substrate, sequentially forming an etch stop layer and an interlayer dielectric layer on the semiconductor substrate, forming a copper metal interconnect structure in the interlayer dielectric layer, forming a copper layer in the copper metal interconnect structure, forming a cobalt layer on the copper layer, and forming an aluminum nitride layer on the cobalt layer. The stack of cobalt layer and copper layer effectively suppresses electromigration caused by diffusion of the copper layer into the interlayer dielectric layer, improves the adhesion between the copper layer and the etch stop layer, and prevents delamination.
US09824913B2
The invention provides an isolation structure and a manufacturing method thereof for a high-voltage device in a high-voltage BCD process, the isolation structure comprising: a semiconductor substrate having a first type of doping; an epitaxial layer having a second type of doping over the semiconductor substrate, wherein the first type of doping is opposite to the second type of doping; an isolation region having the first type of doping, wherein the isolation region extends through the epitaxial layer into the semiconductor substrate, and wherein the isolation region has a doping concentration on the same order as a doping concentration of the epitaxial layer; a field oxide layer over the isolation region. This invention effectively isolates the epitaxial island where the BCD high-voltage device is located, thereby increasing the breakdown voltage of the high-voltage device in the BCD process. Further, with a minimum thickness of the field oxide layer, the parasitical threshold voltage between the aluminum wiring and the silicon surface of the high-voltage device can be higher than 1200V, thereby improving the planarization of oxide layer steps on the silicon surface in the whole high-voltage BCD process, and enhancing the reliability of the product.
US09824911B2
A substrate support for supporting a substrate when forming a film on a surface of the substrate by chemical vapor deposition. The substrate support includes a graphite material having a recessed portion for accommodating the substrate, a multilayer film on the recessed portion and consisting of a first degassing prevention film of SiC and a sublimation prevention film of TaC or HfC stacked together, and a second degassing prevention film of SiC located on portions of the graphite material other than the recessed portion.
US09824897B2
A method is provided for the processing of a device having a crystalline silicon region containing an internal hydrogen source. The method comprises: i) applying encapsulating material to each of the front and rear surfaces of the device to form a lamination; ii) applying pressure to the lamination and heating the lamination to bond the encapsulating material to the device; and iii) cooling the device, where the heating step or cooling step or both are completed under illumination.
US09824891B1
The invention disclosed a method of manufacturing the thin film, which belongs to the technological field of SOI wafer manufacture. By growing a layer of dielectric material (silicon oxide) on the provided high-resistivity silicon wafer, then to grow a layer of amorphous silicon on the dielectric material, to transfer a layer of silicon oxide to the amorphous silicon, to make the mono crystalline silicon exist on the oxidation layer, so that a SOI wafer with a layer of amorphous silicon is manufactured. The process above is completed in specific process conditions. The manufactured thin film, e.g. SOI wafer with amorphous silicon layer, is used main for RF apparatus.
US09824890B2
A reactor for growing or depositing semiconductor films or devices. The reactor may be designed for inline production of III-V materials grown by hydride vapor phase epitaxy (HVPE). The operating principles of the HVPE reactor can be used to provide a completely or partially inline reactor for many different materials. An exemplary design of the reactor is shown in the attached drawings. In some instances, all or many of the pieces of the reactor formed of quartz, such as welded quartz tubing, while other reactors are made from metal with appropriate corrosion resistant coatings such as quartz or other materials, e.g., corrosion resistant material, or stainless steel tubing or pipes may be used with a corrosion resistant material useful with HVPE-type reactants and gases. Using HVPE in the reactor allows use of lower-cost precursors at higher deposition rates such as in the range of 1 to 5 μm/minute.
US09824888B2
To provide a crystalline oxide semiconductor film. By collision of ions with a target including a crystalline In—Ga—Zn oxide, a flat-plate-like In—Ga—Zn oxide is separated. In the flat-plate-like In—Ga—Zn oxide, a first layer including a gallium atom, a zinc atom, and an oxygen atom, a second layer including a zinc atom and an oxygen atom, a third layer including an indium atom and an oxygen atom, and a fourth layer including a gallium atom, a zinc atom, and an oxygen atom are stacked in this order. After the flat-plate-like In—Ga—Zn oxide is deposited over a substrate while maintaining the crystallinity, the second layer is gasified and exhausted.
US09824884B1
A method of depositing silicon nitride films on semiconductor substrates processed in a micro-volume of a plasma enhanced atomic layer deposition (PEALD) reaction chamber wherein a single semiconductor substrate is supported on a ceramic surface of a pedestal and process gas is introduced through gas outlets in a ceramic surface of a showerhead into a reaction zone above the semiconductor substrate, includes (a) cleaning the ceramic surfaces of the pedestal and showerhead with a fluorine plasma, (b) depositing a halide-free atomic layer deposition (ALD) oxide undercoating on the ceramic surfaces, (c) depositing a precoating of ALD silicon nitride on the halide-free ALD oxide undercoating, and (d) processing a batch of semiconductor substrates by transferring each semiconductor substrate into the reaction chamber and depositing a film of ALD silicon nitride on the semiconductor substrate supported on the ceramic surface of the pedestal.
US09824874B2
An ion funnel device is disclosed. A first pair of electrodes is positioned in a first direction. A second pair of electrodes is positioned in a second direction. The device includes an RF voltage source and a DC voltage source. A RF voltage with a superimposed DC voltage gradient is applied to the first pair of electrodes, and a DC voltage gradient is applied to the second pair of electrodes.
US09824866B2
Method for carrying out plasma processing on a wafer under Run-to-Run control by using a plasma processing apparatus having a plasma processing chamber, a process monitor which monitors a condition in the plasma processing chamber, and an actuator which controls parameters which are constituent elements of a plasma processing condition. The method includes the steps of making one of the parameters a (N−1)th manipulated variable, calculating a first difference between a process monitor value in the plasma processing obtained by the process monitor and a desired value of the process monitor value in the plasma processing, calculating a correction amount of the (N−1)th manipulated variable on the basis of the first difference and a previously obtained correlation between the process monitor value in the plasma processing and the (N−1)th manipulated variable, wherein N is a natural number equal to or larger than 2.
US09824861B2
A substrate processing apparatus includes at least one process module configured to process first substrates. A position detector is configured to detect first positions of the first substrates. A control unit is configured to control the position detector so as to measure a second position of a second substrate selected from the first substrates to be processed in a same process module depending on a measurement interval set for the same process module.
US09824859B1
Methods, devices and systems for targeted, maskless modification of material on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform direct and knock-on ion implantation, producing patterned material modifications with selected chemical and 3D-structural profiles. The number of required process steps is reduced, reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding individual columns, and support superior, highly-configurable process execution and control. Targeted implantation can be used to prepare the substrate for patterned blanket etch; patterned ALD can be used to prepare the substrate for patterned blanket deposition; neither process requiring photomasks or resist. Arrays of highly configurable beam columns can also be used to perform both positive and negative tone lithography in a single pass.
US09824856B2
A deposition method is implemented in a focused ion beam system that supplies a compound gas to a specimen, and applies an ion beam to the specimen to deposit a deposition film, the deposition method including: a first deposition film-depositing step that deposits a first deposition film on the specimen using the ion beam that is defocused with respect to the specimen; and a second deposition film-depositing step that deposits a second deposition film on the first deposition film using the ion beam that is smaller in defocus amount than that used in the first deposition film-depositing step.
US09824836B1
An input device for use with a first electronic device and a second electronic device includes a frame, a plurality of manually depressible input members supported by the frame, a communication module supported by the frame and operable to selectively communicate with the first electronic device and the second electronic device, and a switch supported by the frame and coupled to the communication module. The switch is operable to change whether the communication module communicates with the first electronic device or the second electronic device. The input device also includes a light source coupled to the switch and positioned at least partially within the frame. The light source is operable to provide a backlight for the plurality of input members. The backlight is modified in response to actuation of the switch.
US09824835B2
A key-switch includes a keycap configured to be pressed down, a base member, and a link mechanism disposed between the keycap and the base member and configured to support the keycap such that the keycap is movable up and down relative to the base member, wherein the link mechanism includes four links arranged in a rectangular shape, and each of the links includes a sliding part configured to slide on the base member, a mounting part attached to the keycap, and joints connecting adjacent links among the four links together.
US09824816B2
A wireless power receiving device and a wireless power transmission apparatus are provided. The wireless power receiver may include a resonator configured to emit an electromagnetic field, a blocker configured to surround a portion of an exterior of the resonator, and a spacer disposed between the resonator and the blocker.
US09824810B2
A transformer includes a magnetic core, a first coil unit and a second coil unit. The first coil unit is disposed within the magnetic core and includes a laminated board having layers laminated therein and conductive patterns. Respective ones of the conductive patterns are disposed on the laminated layers. The second coil unit includes a conductive wire spaced apart from the conductive patterns of the laminated board by an insulating distance. The conductive wire includes a triple-insulated wire surrounded by three sheets of insulating paper to maintain the insulating distance from the conductive patterns.
US09824799B2
A measuring resistor for high-current measurements is provided, which has a defined resistance value. The measuring resistor has a resistive layer having a sheet resistivity. The resistance value of the measuring resistor is defined by the resistive layer and is less than the sheet resistivity of the resistive layer.
US09824784B2
To provide a protection barrier, which includes an inlet from which laser light emitted from a laser device enters; an outlet from which the laser light is output towards an irradiation target; and a unit configured to prevent a leakage, where the unit is configured to reduce an intensity of the laser light leaked from the protection barrier, wherein the protection barrier is configured to surround a light path of the laser light emitted from the laser device.
US09824783B2
The invention generally relates to a radiation shielding apparatus that includes a shielding box unit into which a radiation generating device is inserted, a locking unit disposed on an outside of the shielding box unit, an operation display unit disposed on the outside of the shielding box unit to display a locked state of the locking unit, and a control unit for controlling an operation of each of the radiation generating device and the operation display unit.
US09824778B2
A nonvolatile memory system includes a nonvolatile memory device including a distribution table suitable for storing recovery read level intervals that are set by being changed through multiple stages according to a distribution value of threshold voltage levels of a plurality of memory cells, measured at a reference read level, is changed through the multiple stages; and a memory controller suitable for reading measurement data from the memory cells by additionally using a measurement read level, searching for a difference value between the normal data and the measurement data from the multiple stages of distribution values stored in the distribution table, and recovering the normal data based on a recovery read level interval corresponding to a searched distribution value, when an error occurs in normal data read from the memory cells by using the reference read level.
US09824777B2
A storage system is provided which includes: a storage device including a first memory, which may be nonvolatile memory, and a second memory, which may be a device memory, and configured to request a test on at least one of the first and second memories; and a host configured to test the at least one memory in response to the request for the memory test from the storage device and store the test result in the first memory or a third memory.
US09824766B2
The present invention provides a semiconductor device including a nonvolatile memory of which the memory size of a data area and the memory size of a code area can be freely changed. The semiconductor device according to one embodiment includes a nonvolatile memory which can switch between a reference current reading system which performs data read by comparing a current flowing through a first memory cell as a read target and the reference current and a complementary reading system which performs data read by comparing currents flowing through a first memory cell and a second memory cell storing complementary data, as a read target.
US09824758B2
A semiconductor memory device includes a plurality of memory blocks. The semiconductor memory device also includes a block decoder configured to output a block select signal for selecting at least one memory block of the plurality of memory blocks to at least one block word line of a plurality of word lines, and a connecting circuit including a plurality of pass transistors configured to electrically connect global lines to local lines of a plurality of memory cells included in the plurality of memory blocks in response to the block select signal. The semiconductor device may also include a control logic configured to apply a voltage pulse to global word lines and a ground voltage to global select lines of the global lines, and the voltage pulse to at least the one block word line while the semiconductor memory device is in a ready state.
US09824752B2
A memory device includes an array of resistive memory cells wherein each pair of resistive memory cells includes a first switching element electrically coupled in series to a first resistive memory element and a second switching element electrically coupled in series to a second resistive memory element. A source of the first switching element and a source of the second switching element receive a common source line signal.
US09824750B2
Technologies are generally described herein for technologies to sense the threshold voltage for memory cells in one sensing operation. The memory cells may be storage circuits for a flash memory device, such as a multilevel flash memory device. Data may be stored and retrieved in the memory cells of the flash memory without involving the use of hardwired or predetermined thresholds. According to some configurations, the sense time distribution from a set of flash cells (e.g., one row), may be processed to decode the digital state of each memory cell. In some examples, computer-executable instructions may be used to process and decode the digital state of the memory cells.
US09824748B1
Static random access memory (SRAM) bitcell structures with improved minimum operation voltage (Vmin) and yield are provided. The structures may include a silicon substrate, a deep n-well (DNW) layer, p-well (PW) regions, doped back-plate (BP) regions, a buried oxide (BOX) layer, and/or active regions formed on the BOX layer and over portions of the BP regions. At least one BP region may extend below at least one shallow trench isolation (STI) region, at least one contact to back plate (CBP), at least one active region and at least one PC construct overlapping the at least one active region forming a channel of at least one of a first pull-up (PU1) transistor and a second pull-up (PU2) transistor. The at least one CBP facilitates biasing of at least one the PU1 and PU2 transistors during at least one of a read, write or standby operation of the structures.
US09824747B2
The present disclosure provides a static random access memory (SRAM) cell comprising first, second, and third fins defined in various well regions. The fins are spaced from each other along a first direction and extend lengthwise generally along a second direction perpendicular to the first direction. The fins include source, drain, and channel regions for various pull-up, pull-down, and pass-gate fin field-effect transistors (FinFETs). The SRAM cell further includes various gate features over the fins and extending lengthwise generally along the first direction. The gate features include gate regions for the various FinFETs.
US09824746B1
A memory device may include: a plurality of cell mats arranged in a plurality of rows and columns; a plurality of first drivers, each first driver being disposed on a left side of a corresponding cell mat of the plurality of cell mats and configured to drive a first sub-word line of the corresponding cell mat; and a plurality of second drivers, each second driver being disposed on a right side of the corresponding cell mat of the plurality of cell mats and configured to drive a second sub-word line of the corresponding cell mat, wherein, during an active operation, among the plurality of cell mats, sub-word lines of cell mats disposed in odd-numbered columns or sub-word lines of cell mats disposed in even-numbered columns are selectively activated.
US09824741B2
Provided is a refresh control device including: an arbitration operating unit configured to arbitrate (i) a memory access request for accessing a volatile memory that requires a refresh operation for holding data and (ii) a refresh trigger for requesting execution of the refresh operation; and a trigger generating unit configured to generate refresh triggers in a non-constant cycle to satisfy refresh-rate requirements defining the number of refresh operations necessary to be executed per predetermined period for the volatile memory to hold the data.
US09824739B2
A magnetic storage apparatus is disclosed, and is configured to access data. The magnetic storage apparatus includes a magnetic storage track, a first write apparatus, a second write apparatus, and a drive apparatus. The first write apparatus and the second write apparatus are located at different positions on the magnetic storage track. The first write apparatus is configured to write first data “0” or second data “1”. The second write apparatus is configured to write third data “2” and fourth data “3”.
US09824735B1
An apparatus includes a perpendicular magnetic tunnel junction (MTJ) including a free layer. The apparatus includes a spin orbit torque metal layer coupled to the perpendicular MTJ and configured to change a magnetization state of the free layer responsive to flow of a current along the spin orbit torque metal layer. The apparatus includes a random number generator configured to generate a random number at least partially based on a state of the perpendicular MTJ.
US09824724B2
According to one embodiment, a magnetic recording and reproducing device includes a magnetic recording medium including a plurality of recording tracks, a magnetic head, and a controller. The plurality of recording tracks includes a first track. The controller causes the magnetic head to implement a first recording operation of recording first information in at least two of a plurality of first track recording components included in the first track. The controller causes the magnetic head to implement a first reproduction operation of reproducing the first information from a first information reproducing/recording component of one of the at least two of the plurality of first track recording components.
US09824719B2
A method for automatically starting an audio recording that includes receiving audio data and dividing the audio data into a first set of consecutive segments and a second set of consecutive segments that occur after the first set. The method further includes analyzing the first set of segments by measuring an average energy and peak value for each segment of the first set and determining a silence score therefrom, and analyzing the second set of segments by measuring an average energy and peak value for each segment of the second set and determining an music score therefrom. The method begins a recording of the audio data if the silence score is above a first predetermined value and the music score is above a second predetermined value.
US09824717B2
The respective occupancies of a set of audio buffers are controlled via a common target occupancy value common to all the buffers in the set. This common target may take non-integral values. For each buffer, the difference is taken between the occupancy value of the buffer and the common target occupancy value. A sample is dropped or repeated as the difference exceeds half a sample. A recursive sum is formed of the fractional parts of the difference measures from the set of buffers and the recursive sum is used to adjust the common target occupancy value, within a selected range of values.
US09824703B2
According to one embodiment, a magnetic recording and reproducing device includes a magnetic recording medium, a magnetic head, and a processor. The magnetic head includes a first reproducing element portion and a second reproducing element portion. The processor is configured to acquire a first signal and a second signal, and to output an output signal according to either one of the first signal and the second signal. The first signal is obtained by reproducing information recorded on a first recording region by the first reproducing element portion. The second signal is obtained by reproducing the information recorded on the first recording region by the second reproducing element portion.
US09824698B2
A see-through, head mounted display and sensing devices cooperating with the display detect audible and visual behaviors of a subject in a field of view of the device. A processing device communicating with display and the sensors monitors audible and visual behaviors of the subject by receiving data from the sensors. Emotional states are computed based on the behaviors and feedback provided to the wearer indicating computed emotional states of the subject. During interactions, the device, recognizes emotional states in subjects by comparing detected sensor input against a database of human/primate gestures/expressions, posture, and speech. Feedback is provided to the wearer after interpretation of the sensor input.
US09824695B2
Embodiments herein include receiving a request to modify an audio characteristic associated with a first user for a voice communication system. One or more suggested modified audio characteristics may be provided for the first user, based on, at least in part, one or more audio preferences established by another user. An input of one or more modified audio characteristics may be received for the first user for the voice communication system. A user-specific audio preference may be associated with the first user for voice communications on the voice communication system, the user-specific audio preference including the one or more modified audio characteristics.
US09824693B2
An ancillary code is extracted from the media signal by monitoring the media signal during a first time interval according to a first monitoring parameter, evaluating the media signal to detect an ancillary code and optionally monitoring the media signal during a second monitoring time interval depending on an outcome of the evaluation of the media signal. In different iterations, different data acquisition window durations and/or overlaps are applied according to a factor such as an iteration count or a detection confidence level.
US09824688B2
A method is provided for controlling a speech-recognition text-generation system that captures speech, and converts the captured speech into character strings through speech recognition. The method includes determining whether or not the character strings include a predetermined phrase, and specifying, in a case where the predetermined phrase is determined to be included, a character string associated with the predetermined phrase among the character strings as a first character string which is a deletion candidate. The method also includes displaying the first character string in a first display form on a display terminal and displaying a second character string, which is a character string other than the first character string, in a second display form on the display terminal.
US09824674B2
A recording method includes acquiring each piece of acoustic data representing a sound from each of a plurality of portable terminal devices. The each of the plurality of portable terminal devices includes a recording unit configured to generate the piece of acoustic data. The recording method also includes executing synchronization processing for synchronizing the respective pieces of acoustic data and executing mixing processing for mixing a plurality of pieces of acoustic data for which the synchronization processing has been executed.
US09824662B2
The present disclosure provides a Thin Film Transistor Array Substrate and a Liquid Crystal Display apparatus thereof, and relates to the technical field of liquid crystal displaying. The Thin Film Transistor Array Substrate of the present disclosure includes a plurality of gate lines and a plurality of data lines, wherein regions surrounded by the gate lines and the data lines are pixel regions, and wherein a high level common voltage line being used when signal on the data line is at a low level and a low level common voltage lines being used when signal on the data line is at a high level are also arranged in parallel to the gate lines in each of the pixel regions. With the Thin Film Transistor Array Substrate of the present disclosure, the Greenish phenomenon in the existing liquid crystal display apparatus may be effectively solved.
US09824650B2
A method for an electronic device with a display unit and an electronic device are provided. The method may comprise: obtaining an environmental parameter under an environment where the electronic device is disposed when the display unit is in a first display status, the environmental parameter including at least an environmental color temperature parameter of the environment and configured for adjusting the display status of the display unit; determining whether to adjust the display status based on at least the environmental color temperature parameter included in the environmental parameter to get a first determination result; and adjusting the display status from the first display status to a second display status different from the first display status if the first determination result indicates that it is to adjust the display status.
US09824648B2
A transparent display apparatus and a method for driving transparent display panel thereof are provided. The transparent display apparatus includes a transparent display panel, an image processor and a display driver. The image processor receives a display data signal having multiple display data and a transparency control signal having transparency values to provide multiple driving data. When each of display data corresponds to a transparent state, the image processor sets the corresponding driving data according to a predetermined transparent state gray-level corresponding. When each of display data corresponds to a non-transparent state, the image processor transforms the each of display data into the driving data corresponding to the non-transparent state. The display driver drives the transparent display panel to display a display frame having all gradations of a black state, a white state and the transparent state according the driving data.
US09824645B2
According to one embodiment, a display device includes first, second, and third interconnects, switch elements, pixel electrodes, a display layer, first, and second color filters, and a controller. The first interconnects extend in a first direction and are arranged in a second direction. The second interconnects extend in the second direction and are arranged in the first direction. The switch elements are electrically connected to the first and second interconnects. The pixel electrodes are electrically connected to the switch elements. The third interconnects extend in the second direction and are arranged in the first direction. The display layer performs an optical operation of light emission or a change of an optical characteristic. The first color filters are of a first color. The second color filters of a second color have a higher visibility than the first color. The controller is electrically connected to the first, second, and third interconnects.
US09824638B2
A display device including a display panel, a timing controller, a backlight unit, and a backlight controller. The display panel includes a plurality of display blocks, and receives an image signal and display an image. The backlight unit includes a-numbered red light sources, b-numbered green light sources (a and b are natural numbers, b
US09824634B2
An OLED display device includes an OLED display panel on which subpixels are disposed, a gamma reference voltage supply circuit supplying gamma reference voltages that are variable during driving and when sensing a threshold voltage, and a data driver supplying data voltages based on the gamma reference voltages to data lines. The data driver senses a voltage of a sensing node within each of the subpixels in sensing mode. A timing controller controls the data driver, and performs a compensation process based on the voltage sensed by the data driver.
US09824631B2
In a display element such as an organic EL element, deterioration progresses due to light emission, and emission luminance is lowered even if the same voltage is applied to the display element. Therefore, use over time causes variations in luminance of each pixel, thereby a so-called “image burn-in” phenomenon occurs. Given this factor, the invention provides a display device which can reduce the difference in deterioration of a display element in each pixel and suppress variations in light emission of a display element in a pixel. It is prevented that only a specific pixel has a long accumulated lighting time. For that purpose, a gray scale of a display pattern is changed to prevent the difference in deterioration of display element in pixels from increasing. Alternatively, a specific display pattern is prevented from being fixedly displayed in a specific region. Further alternatively, a pixel lagging behind in deterioration is deteriorated so that the accumulated lighting time of pixels is equal to each other.
US09824627B2
A display circuit includes a plurality of pixel circuits and a shared compensation transistor. Each pixel circuit includes a driving transistor to control light emission of a light emitter. The compensation transistor is to compensate the threshold voltages of the driving transistors of the pixel circuits.
US09824617B2
A data driver electrically connected to data lines includes a digital-to-analog converter configured to sequentially receive data signals respectively corresponding to the data lines and outputting an analog image signal, and a switching output unit configured to sequentially output the analog image signal outputted from the digital-to-analog converter as analog driving signals respectively corresponding to the data lines in synchronization with a clock signal.
US09824609B2
A system assesses the susceptibility of an electronic device user to a cybersecurity threat by identifying information relating to the user of an electronic device, selecting a mock attack, and causing the mock attack to be deployed to the user so that the user receives the mock attack in the user's regular context of use of the electronic device. When a sensor detects a user action that the user has interacted with the electronic device in response to the mock attack, the system will record the sensed user action and use the sensed user action to determine the susceptibility of the user to a cybersecurity threat. In some embodiments, the lack of user action in response to a mock attack also may be used to determine the user's susceptibility to a cybersecurity threat.
US09824608B1
A method for visually guided storage array installation is disclosed. The method includes receiving an installation plan for a storage array and determining a component of the storage array that is specified in the installation plan. One or more visual indicators that are associated with the component of the storage array are displayed to indicate a status corresponding to executing a portion of the installation plan.
US09824606B2
A method, information processing system, and computer readable article of manufacture reinforce behavior in an individual. A behavior associated with an individual is monitored. A determination is made, based on the monitoring, that the behavior substantially matches a behavior in a set of behaviors. A set of interactive actions associated with the behavior are identified. At least one of the interactive actions in the set of interactive actions is selected. The at least one of the interactive actions that has been selected is performed. A response from the individual is monitored in response to the least one of the interactive actions being performed. An indicator is associated with the at least one of the interactive actions based on the reaction from the individual. The indicator indicates a relative degree of success in obtaining a desired response from the individual.
US09824598B2
A flight hindrance display apparatus includes circuitry. The circuitry is configured to acquire surrounding information of an aircraft. The surrounding information is related to a hindrance factor which is a possible flight hindrance to the aircraft. The circuitry is configured to determine a spatial range of the flight hindrance factor on a basis of the acquired surrounding information. The circuitry is configured to determine a flight hindrance cross-section that intersects a plane including a vector of a flight direction of the aircraft and is included in the determined spatial range of the flight hindrance factor. The circuitry is configured to cause a display unit to stereoscopically display an own position of the aircraft, the spatial range of the flight hindrance factor, and the flight hindrance cross-section.
US09824591B1
A system and method are provided for monitoring, collecting and aggregating position information from multiple independent data sources to localize a position of an aircraft operating worldwide. The localized position information is provided to one or more end-users or stakeholders in a format for direct integration into one or more mapping and/or situational awareness display applications. Information is collected from a plurality of monitored data sources. Weighted values are applied to certain of the information collected from the plurality of data sources according to known or predictable/determinable static and/or dynamic accuracy errors and latencies of the information provided. A detailed analytic algorithm is applied to provide a probabilistic analysis that results in a resolution of a real-time, or near real-time, aircraft location, as well as an ability to accurately predict an aircraft location along a track at some future time.
US09824588B2
An electronic device includes: a monitor unit configured to monitor a speed and a position of a host car and a preceding car; a reception unit configured to receive traffic signal information including at least a current display state of a traffic light in an intersection and timing information of a change of the display state of the traffic light; a prediction unit configured to generate a first prediction result and a second prediction result; and a warning unit configured to give a first-stage warning when the first prediction result indicates that the preceding car will go into the intersection after the traffic light changes to the red signal display state, and give a second-stage warning when the second prediction result indicates that the preceding car cannot stop without braking suddenly.
US09824585B2
A collision avoidance apparatus includes an obstacle detection unit to detect an obstacle ahead of a vehicle; an approaching object detection unit to detect an approaching object approaching the vehicle from behind the vehicle; and an electronic control unit to calculate a collision time until the vehicle collides with the obstacle, based on the distance and relative speed of the obstacle, and starts a drive support to avoid a collision with the obstacle when the vehicle speed is a lower limit speed or greater, and the collision time is a threshold or less. When there is a likelihood for the object to collide with the vehicle from behind the vehicle, the electronic control unit lowers the lower limit speed, and/or starts drive support when the collision time is the threshold or less, even when the vehicle speed is less than the lower limit speed.
US09824580B2
Provided is a mechanism for producing an uncertainty-based traffic congestion index, wherein the mechanism may comprise: obtaining a plurality of GPS data points; dividing the plurality of GPS data points into a plurality of variable sliding windows, wherein the dividing maximizes an amount of shape information in each of the plurality of variable sliding windows, performing a map matching process on the plurality of GPS data points as the GPS data points had been divided by the dividing; calculating a confidence value indicative of the map matching process; and producing the traffic congestion index, wherein the traffic congestion index is produced by taking into account the calculated confidence value indicative of the map matching process. In various embodiments, such a mechanism may be implemented via systems, methods and/or computer program products.
US09824577B2
A method in which a control device controls at least one of a plurality of terminal devices is provided. The method includes transmitting a search request for requesting information on a location of each of a plurality of terminal devices, and information on a direction of each of the plurality of terminal devices based on a direction in which the control device is directed, receiving a response corresponding to the transmitted search request, determining at least one of the plurality of terminal devices that are controllable from among the plurality of terminal devices based on the received response, and controlling the determined at least one of the plurality of terminal devices that are controllable.
US09824574B2
A number of different approaches are described for minimizing or preventing false alarms. In one case, override panels are used such as locally near or in the protected space or remotely at a security desk, for example. These override panels are used to deactivate or block the generation of a fire alarm signal in the case where the occupants or a management personnel recognizes that the fire alarm signal should not be generated. In this way, an alarm verification step is included. In another aspect, additional, contextual information is used to characterize or adjust when fire alarm signals are generated. This contextual information can be generated from sources that are not typically used in the generation of the fire alarm signal but instead are based on other sources of the information concerning the protected space.
US09824554B2
A system is provided that includes a tracking system including one or more processors that detect movement of people within a secured geographic area, a movement analysis system including one or more processors that correlate the detected movements of people within geographic locations of a building information model (BIM) of the secured area, and an optimization system including one or more processors that correlate the locations of people with a distance of each movement to provide reports that optimize a location of people or equipment within the secured area based upon the distances and frequencies of movement.
US09824552B2
Communication devices are disclosed. In an example embodiment, a communication device may include a communication module including an illumination source and a body element. The body element may be configured to allow illumination generated by the illumination source to propagate within and illuminate at least a portion of an outer surface of the body element.
US09824551B2
A seating area system for use in a seating area where the seats have respectively associated radiation emitting devices (for example, infrared light emitting diodes) to help people find their seats through a camera type display on their mobile devices. Upon request from an end user, a server system turns on the radiation emitting device, associated with the end user's request, for a limited time.
US09824543B2
A parlay card sweepstakes opportunity is presented to a player via a web site hosted by a computer system. The parlay card sweepstakes opportunity may include one or more player-selectable parameters for the selection of previously generated pre-populated parlay cards associated with the sweepstakes opportunity. The pre-populated parlay cards may be stored in a data store that is accessed upon receiving a parameter selection from the player. The pre-populated parlay cards include a plurality of events as well as predicted outcomes for these events. A particular pre-populated parlay card may be selected from the plurality of previously generated pre-populated parlay cards and presented to the player via the web site. Actual outcome information regarding events included in the pre-populated parlay card may then be received and a prize may be presented to the player based a combined actual outcome of the plurality of events included on the pre-populated parlay card.
US09824539B2
An electronic method of gaming comprises an electronic game controller forming a game outcome by selecting a plurality of symbols for display at respective ones of a plurality of symbol display positions of a symbol display, evaluating the game outcome to determine whether to a) make an award in respect of the game outcome, and b) remove one or more symbols from the symbol display, and upon removing one or more symbols, making an additional award upon the removal of the one or more symbols corresponding to one or more removal outcomes.
US09824537B1
A method, apparatus, and computer readable storage to implement an augmented game system. A player can play an online game and accumulate loyalty points without have to pay cash. The player can enter a physical casino and play an electronic gaming machine which can retrieve the player's information from the online game including the number of loyalty points the player has and any other incentives or game add-ons the player would be entitled to. The player would then play a physical game on the electronic game normally (by depositing cash and playing) but the game play would be augmented by virtue of the player having the loyalty points or other incentives or add-ons. For example, the game can be augmented by giving the player a better paytable.
US09824536B2
A gaming system which facilitates the two-way communication between mobile devices, such as mobile phones, and different gaming system components to enhance a player's gaming experience.
US09824530B2
An exemplary method comprises receiving information associated with a game-playing transaction conducted between a user device and a game-playing terminal, wherein the game-playing transaction is associated with a request for playing a game; determining a location of the user device associated with the game; determining the user device is located in an approved location associated with the game; and processing the game-playing transaction based on determining the user device is located in the approved location associated with the game. The game-playing transaction is conducted on a first communication interface, and the information associated with the game-playing transaction is received on a first or second communication interface.
US09824529B2
This disclosure provides a wagering system associated with a first wagering facility, the system communicably coupled with a network and including a memory operable to store betting odds on a plurality of wagering events hosted by the first wagering facility. The system further includes a processor coupled to the memory and operable to receive a first bet on a particular event via the network, the particular event comprising at least one of the wagering events hosted by the first wagering facility. If a second bet is received within a predetermined period of time after the first bet is received, then the processor recalculates the betting odds on the particular event based upon both of the first bet and the second bet. If a second bet is not received within a predetermined period of time after the first bet is received, then the processor recalculates the betting odds on the particular event based upon the first bet.
US09824526B2
A gaming system including a game which utilizes one or more designated symbols. In these embodiments, if at least one single individual designated symbol is generated and displayed at at least one single symbol display position, the gaming system modifies the single individual designated symbol into one or more individual designated symbols at the same single symbol display position. This modification of an individual designated symbol into a plurality of individual designated symbols is associated with one or more benefits, such as the availability of one or more awards not previously available prior to the modification.
US09824522B2
Embodiments of the invention provide a vending machine for enabling a transaction between a user and one of a plurality of remote sources. Vending machine may include a communication interface communicatively coupled with each source. Vending machine may include an input interface for receiving an input regarding the selection of a source. Vending machine may include a speaker and a microphone for audio communication with selected source, as well as a display for providing information related to the transaction from selected source. Vending machine may include a processor that transmits an indication that a source has been selected and establishes, via the communication interface, audio communication. Processor may receive, via the communication interface, a control command from selected source directing a hardware peripheral of vending machine to perform a function. Processor may receive an issuance authorization from selected source. The issuance authorization may cause a transaction item to be issued.
US09824510B2
A vehicle operation sensing system includes an operation sensor, a fixture sensor, and a vehicle operation sensing unit. The operation sensor is an acceleration sensor fixed to an operation member, and sensing an acceleration generated in the operation member at least in a gravitational acceleration direction. The operation member has one end fixed to a vehicle and the other end a position of which is displaced in the gravitational acceleration direction when the operation member is operated. The fixture sensor is an acceleration sensor used at a position unchanging part of the vehicle, and sensing an acceleration generated in the vehicle at least in the gravitational acceleration direction. The vehicle operation sensing unit has an operation sensing part sensing an operation of the operation member by using a sensing result of the fixture sensor as an object to be compared with a sensing result of the operation sensor.
US09824498B2
Methods, systems, and computer programs are presented for the presentation of images in a head-mounted display (HMD). One HMD includes a screen, a processor, inertial sensors, a motion tracker module, and a display adjuster module. The motion tracker tracks motion of the HMD based on inertial data from the inertial sensors, and the display adjuster produces modified display data for an image frame to be scanned to the screen if the motion of the HMD is greater than a threshold amount of motion. The display data includes pixel values to be scanned to rows in sequential order, and the modified display data includes adjusted pixel values for pixels in a current pixel row of the image frame to compensate for the distance traveled by the HMD during a time elapsed between scanning a first pixel row of the image frame and scanning the current pixel row of the image frame.
US09824489B2
A grading and monitoring system that evaluates a quality of index of a neighborhood via satellite images in described. The system utilizes a fuzzy-logic rule based technique in determining the quality of the neighborhood. The crisp input parameters that define the characteristics of a neighborhood are first fuzzified and based on a set of rules that are obtained from an experts knowledge, an output fuzzy set of type-2 is obtained. Further, the output fuzzy set is aggregated and type-reduced to obtain an output crisp value corresponding to the neighborhoods quality. The system also monitors changes in the neighborhood quality in predetermined time intervals.
US09824488B2
Systems and methods for rendering 2D grids using texture mapping and fragment shaders.
US09824481B2
Techniques describe tagging visual data (e.g., image and/or video data) with wireless and sensor measurement information by a mobile device. Tagged visual data may be sent to a server, such as a crowdsourcing server. Techniques further describe receiving visual data from a device, wherein the visual data is tagged with information comprising source identifying information associated with an at least one signal emitting device, identifying at least one visual feature from the visual data, determining a coordinate on a map at which the visual data was acquired based on identifying the at least one visual feature from the visual data, and associating the coordinate on the map with the information associated with the at least one signal emitting device.
US09824477B1
A system and method for creatively directing a promotional campaign comprised of photos or videos captured by a plurality of remote contributors. The method may comprise creating, via a graphical user interface of a computing device, a list of shot templates for desired photos or videos, each shot template comprising shot specifications. The shot specifications may comprise a description of a desired subject of the shot template and one or more desired camera settings. The method may then comprise generating a notification regarding the list of shot templates from the graphical user interface, sending the notification to an image capture device of one or more of the plurality of remote contributors, and displaying the list of shot templates on the image capture device.
US09824474B2
One embodiment is directed to a method comprising obtaining, using a portable device, identifier information about one or more identifiers associated with one or more of a rack and equipment installed in the rack and displaying on the portable device a picture of the rack captured and displaying on the portable device an overlay that includes markings that define a perimeter of the rack and a plurality of equipment positions within the rack. The method further comprises receiving, by the portable device, an alignment of the overlay on the picture of the rack and the equipment positions and receiving location information for the rack. The method further comprises storing the picture of the rack, the alignment of the overlay on the picture of the rack, the identifier location, and the location information by a management application. Other embodiments are disclosed.
US09824473B2
The present invention extends to methods, systems, and computer program products for cross-platform data visualizations using common descriptions. Embodiments of the invention provide mechanisms for simplifying software development and enhanced code reliability. A user interface, along with interactive and dynamic characteristics, can be described (programmatically and/or declaratively) independently of any specific device platform. User interface qualities can be described using a generic scene graph structure with attached behaviors. The generic scene graph can then be used to drive the user interface on any number of different computing platforms using platform specific (e.g., rendering, gesture recognition, etc.) sub-systems. Platform specific sub-systems can vary based on technologies that are used by the platform specific sub-systems. For example, rendering sub-systems can vary based on the technology used to render graphical data, such as, for example, Open GL, XAML, Direct X, Quartz, etc.
US09824472B2
According to one embodiment of the present invention, a computer-implemented method generates an alternative visualization of a data set based on a specification of a selected first visualization of the data set and parameters comprising information about a data visualization goal and statistical relations between two or more variables in the data set. Embodiments of the present invention further include a system and computer program product for generating an alternative visualization in substantially the same manners described above.
US09824468B2
A computationally efficient dictionary learning-based term is employed in an iterative reconstruction framework to keep more spatial information than two-dimensional dictionary learning and require less computational cost than three-dimensional dictionary learning. In one such implementation, a non-local regularization algorithm is employed in an MBIR context (such as in a low dose CT image reconstruction context) based on dictionary learning in which dictionaries from different directions (e.g., x,y-plane, y,z-plane, x,z-plane) are employed and the sparse coefficients calculated accordingly. In this manner, spatial information from all three directions is retained and computational cost is constrained.
US09824465B2
A texture repository is provided for use with an image manipulation application. The texture repository provides a canvas to the image manipulation application for use with an image filter. The texture repository may provide an existing canvas matching the request from the image filter, or the texture repository may generate a new canvas for the request. The generated canvas may be procedurally generated to match the request, or the generated canvas may be resized from an existing canvas stored in a non-volatile storage or a cache.
US09824436B2
A method of comparing measured three-dimensional (3D) measurement data to an object is provided. The method includes the steps of providing a three dimensional measurement device configured to measure 3D coordinates of points on the object and a computing device having a camera and display. During an inspection process, the method measures the object with the 3D measurement device which provides a first collection of 3D coordinates. The first collection of 3D coordinates is stored on the computer network and is associated with an AR marker. During an observation process the method reads the AR marker and transmits from the computer network the first collection of 3D coordinates and a dimensional representation of the object to the computing device. A portion of the first collection of 3D coordinates is registered to the camera image. On the integrated display the registered collection of 3D coordinates and the camera image are shown.
US09824435B2
Proposed are an image analyzing apparatus and program in which the orientation of fiber bundles can be easily analyzed from a three-dimensional image of CMC. Provided is an image analyzing apparatus for analyzing an orientation of a fiber bundle from a three-dimensional image of a fiber-reinforced composite material, comprising an input unit which inputs the three-dimensional image, a binarization processing unit which binarizes the input three-dimensional image and acquires a binary image, an orientation estimation processing unit which estimates each orientation of foreground pixels in the binary image based on an orientation detection filter having a parameter for causing a shape of a detected cross section to have anisotropy, a center extraction processing unit which extracts center pixels showing a center of the fiber bundle from a foreground pixel group, in which the orientation thereof was estimated, based on the orientation detection filter, a fiber bundle connection processing unit which deems center pixels having a same or similar orientation to be a same fiber bundle with regard to the extracted center pixel group, and connects the center pixels indicating the same fiber bundle, and a meander determination processing unit which calculates a meandering amount of the connected center pixel group indicating the same fiber bundle.
US09824432B2
A method of inspecting two or more sides of an object is provided. The method includes generating one set of image data of two or more sides of the object, such as by using spherical mirror segments that project all sides of the object onto a single image and generating an X by Y array of image data of the single image. The projection of the image data is then compensated for, such as by identifying inspection processes to locate defects of the object in the projected image data or by converting the image data from the projected inspection coordinates to Cartesian coordinates. Predetermined inspection processes are then performed on the compensated image data, such as by using the inspection processes that are optimized for use with the projected image data or by converting the projected image data into a Cartesian format and using Cartesian image data inspection processes.
US09824430B2
Provided are a method and an apparatus for adjusting image brightness. The method includes: acquiring an image to be processed, and acquiring a single-channel brightness image based on grayscales of each channel of the image to be processed; performing Gaussian filtering on the single-channel brightness image to acquire a Gaussian filtered image; adjusting grayscales of the Gaussian filtered image based on the grayscales of the Gaussian filtered image and a preset proportion; comparing the Gaussian filtered image after adjustment with the Gaussian filtered image before adjustment to acquire a grayscale change rate of each pixel through adjustment; processing the image to be processed based on the grayscale change rate of each pixel to acquire a processed image; and outputting the processed image.
US09824424B2
Embodiments of the disclosure provide an image amplifying method, an image amplifying device, and a display apparatus, and relate to field of image processing technique, the method comprises: obtaining, by an image amplifying device, high-frequency and low-frequency components of a source image; performing, by the image amplifying device, pixel interpolation on the low-frequency components of the source image through a first interpolation algorithm, to obtain a low-frequency sub-image; performing, by the image amplifying device, pixel interpolation on the high-frequency components of the source image through a second interpolation algorithm, to obtain a high-frequency sub-image; and merging, by the image amplifying device, the low-frequency and high-frequency sub-images, to obtain a merged image; wherein the first interpolation algorithm and the second interpolation algorithm adopt different algorithms, so that it can ensure image quality of the amplified image while reducing the operation amount. Embodiments of the disclosure are applied to image amplification.
US09824410B1
A restaurant service system for assessing the accuracy of estimated delivery time provided by a restaurant includes an order server, a restaurant server, a service server and an assessment server. Each of the servers includes a server software application. The order server software application collects a set of orders from a set of diner devices. The restaurant server software application retrieves an estimated delivery time for each order in the set. The service server software application determines an order actual delivery time for at least one order in the set. The assessment server software application determines an accuracy measure of estimated delivery time for the restaurant.
US09824386B2
According to one aspect, embodiments of the invention provide a router having a first I/O terminal and a second I/O terminal, wherein the first I/O terminal is configured to be in communication with at least one client via a first network, wherein the second I/O terminal is configured to be in communication with a plurality of remote servers via a second network, and wherein the router is configured to receive, at the first I/O terminal via the first network, a web services request from the at least one client, identify, based on the web services request from the at least one client, a group of the plurality of remote servers that are capable of fulfilling the web services request, and transmit, in parallel via the second I/O terminal and the second network, the received web services request to each one of the plurality of remote servers within the group.
US09824384B2
A current location of a portable computerized device can be determined within a retail store. A computer-implemented method to provide a directional aid for a consumer within the store includes receiving an item being sought within a retail store, monitoring, at the processing device, the current location of a portable computerized device, determining an in-store location of the item being sought; and displaying to the consumer a graphic describing a direction and a distance from the current location to the in-store location of the item being sought.
US09824381B2
A mobile station is arranged to determine its location, which is searched against street addresses from a database, and at least one matching street address is retrieved. The street address is searched on the mobile station and/or over the network. The search engine conducts a search in the mobile station file system and/or the Internet and/or a file system over the network with the at least one query term,—at least one search result is arranged to be displayed to user on the screen of the mobile station. This facilitates on-demand effortless Mobile Internet Search that allows the users to access opportunities that they did not know about, or would not have had time to find out about with minimum effort as the software of the mobile phone is scanning the Internet and information pages for these opportunities and displaying the results dynamically on the mobile phone screen.
US09824379B2
A system that incorporates teachings of the present disclosure may include, for example, an avatar engine having a controller to retrieve a user profile of a user, present the user an avatar having characteristics that correlate to the user profile, detect one or more responses of the user during a communication exchange between the avatar and the user, identify from the one or more responses a need to engage in an e-commerce transaction, engage in a commercial exchange with a merchant system according to the e-commerce transaction, identify a commercial status of the e-commerce transaction from the commercial exchange with the merchant system, and present the user by way of the avatar the commercial status of the e-commerce transaction. Other embodiments are disclosed.
US09824378B2
Embodiments for creating a unified catalog include systems and methods that import catalog data from one or more underlying catalog systems. The systems provide a user interface to a user for browsing items from the catalog data and receive a request for at least one selected item from the user. The systems also determine an item identifier for the at least one selected item and match the at least one selected item to at least one source catalog selected from the one or more underlying catalog systems based on the identifier.
US09824374B1
An ad gateway is disclosed. The ad gateway comprises a processor, a memory, and an application stored in the memory. The application when executed by the processor, determines a type of network connection by which a mobile communication device is communicatively coupled to a communication network and a current quality of service (QOS) level of the communication network. The application then selects an advertisement type based on the type of network connection and based on the current QoS level of the communication network. The application then requests an advertisement of the selected type for the mobile communication device from an advertisement data store, wherein the advertisement types comprise a static image type, an animation type, a video type, and a high definition video type. The application then receives the advertisement from the advertisement data store. The application then transmits the advertisement to the mobile communication device.
US09824372B1
The subject matter of this specification can be embodied in, among other things, a method that includes identifying web pages that embed a selected video, aggregating content derived from the identified web pages, and transmitting one or more advertisements (ads) that are targeted to the aggregated content for presentation with the selected video embedded on the identified web pages.
US09824369B1
An online survey platform and process for correlating the bid price offered by a supplier for the completion of an out-of-network survey hosted on the survey platform to one or more intrinsic value indicators of the survey. If the supplier's bid price is less than or equal to the survey budget price set by the buyer, then the routing platform of the present invention will route the supplier's respondent(s) to the survey.
US09824365B2
Systems, methods, apparatuses, and computer program products are provided for determining carbon emissions of one or more vehicles. For instance, in one example embodiment, an apparatus may calculate miles traveled by the vehicles along a predefined route and may calculate a fuel usage of the vehicles for traveling along the route to obtain one or more fuel values. The apparatus may also analyze data indicating the miles traveled and the fuel values to determine fuel efficiency values corresponding to the vehicles traveling the route. The apparatus may also determine an estimate of an amount of carbon emissions for each of the vehicles based in part on applying at least one carbon emission value to respective fuel values associated with corresponding determined fuel efficiency values.
US09824357B2
A method for authenticating an access attempt includes detecting an access attempt by a user device over a network. A challenge-response authentication is provided over the network to the user device. The challenge-response authentication includes an image having a plurality of image objects. The challenge-response authentication is operable to display the image such that at least one of the plurality of image objects is in focus and at least one of the plurality of image objects is not in focus. In response to providing the challenge-response authentication, an authentication response is received from the user device over the network, and it is determined whether the authentication response includes an indication of the at least one of the plurality of image objects that is in focus to determine whether to authenticate or deny the access attempt.
US09824354B1
A transaction is conducted between a merchant site and a customer's electronic device using a payment processor. The merchant site is associated with a client-side application and a server-side application. The client-side application executes on the customer's electronic device. The client-side application electronically sends payment information retrieved from the customer's electronic device to the payment processor. The client-side application does not send the payment information to the server-side application. The payment processor creates a token from the payment information sent by the client-side application. The token functions as a proxy for the payment information. The payment processor electronically sends the token to the client-side application. The client-side application electronically sends the token to the server-side application for use by the server-side application in conducting the transaction. The payment information can thus be used by the server-side application via the token without the server-side application being exposed to the payment information.
US09824345B2
To appropriately execute a receipt generating process based on whether or not an application is installed on a mobile terminal as the target communication device. A printer driver according to the invention has an installation decision unit that determines if a specific application is installed on a mobile device targeted for communication; a receipt generation decision unit that determines whether or not to generate a paper receipt and/or electronic receipt based on the decision of the installation decision unit; and receipt generating process units that execute paper receipt and/or electronic receipt generating processes according to the decision of the receipt generation decision unit.
US09824342B2
Under control of an operator of a payment processing network, a bill presentment service is provided, wherein bills received from a plurality of billing entities are made available to a plurality of consuming entities. The operator also provides at least a portion of a bill payment service wherein the consuming entities are afforded an option of paying the bills from the plurality of billing entities. The operator stores, in a database, registration and preference data pertaining to each of the plurality of consuming entities. At least portion of the registration and preference data includes payment preference data specifying how a given one of the consuming entities wishes to pay at least two of the billing entities. The given one of the consuming entities is afforded an option to pay the at least two of the billing entities with a single command, in accordance with the payment preference data.
US09824332B1
A system comprises connection handler circuitry and privacy enforcement circuitry of a first email subsystem. The connection handler circuitry is operable to receive the email message from a mail user agent. The privacy enforcement circuitry is operable to, after the reception of the email message by the connection handler circuitry and before relaying of the email message to a second email subsystem: detect tracking code in the email message; and replace the detected tracking code with replacement content. The connection handler circuitry is operable to send the email message to the second email subsystem after the replacement of the detected tracking code in the email message. The tracking code may comprise a first uniform resource locator (URL), and the replacement content may comprise a second URL.
US09824331B2
Disclosed are methods and systems for handling social media inputs in an existing multi-channel converged CSTA based infrastructure. The methods and systems may be characterized by determination of priority and potential churn index of the inputs received from sentiment analysis module based on predetermined parameters. The inputs are translated into qualifier by using predetermined combinations of severity index and anticipated churn index, which are then adapted into the CSTA specifications. Thereafter, the method and system includes determination of routing of the adapted posts for further treatment using inbound mechanism or outbound mechanism. Specifically, the routing of the inbound post is carried out leveraging the “one number service” of the CSTA based infrastructure.
US09824325B2
The present invention provides systems and methods for processing return transactions over a network. An embodiment of the invention discloses an online return application that generates an electronic return shipping label that can be delivered to a browser of a customer that wishes to make a return. Also, disclosed is the creation and transmission of label delivery links, which provide for dynamic generation and delivery of shipping labels.
US09824324B2
Automated package deliveries comprises a server at a package delivery system that receives a request for a package delivery, the request comprising an identification of a package and an identification of a first kiosk location. The server associates the package with an aerial delivery device and a user authentication to retrieve the package. The server transmits to the delivery device instructions to deliver the package to the first kiosk. Subsequently, the server receives a request from a user computing device to retrieve the package from the first kiosk and deliver the package to an alternate kiosk. The server transmits to the delivery device instructions to retrieve the package from the first kiosk and instructions to deliver the package to the alternate kiosk. The delivery device retrieves the package from the automated kiosk and delivers the package to the alternate kiosk.
US09824317B2
A method includes forming a working mixed integer linear program (MILP) from a given MILP for job allocation to allocate people to jobs at least by choosing a subset of variables from the MILP. Only person/job combinations that are deemed most valuable are chosen for the subset. The working MILP includes the chosen subset of variables but no other variables from the given MILP. The working MILP is solved to determine a solution. Using the solution, a special linear program is formed and solved to determine a price of each constraint relative to the solution. Using the prices, variables that are not in the working MILP are evaluated to determine any variables that can contribute to an improved solution. The variables evaluated as contributing to an improved solution are added to the working MILP. The working MILP with the added variables is solved. Apparatus and program products are also disclosed.
US09824312B2
Systems and methods can support complex event handling. A complex event handler can receive a current event. The current event may be stored to an event log. The current event may be matched against rule conditions within a rule implementation system. Prior events may be identified, within the rule implementation system, upon which the matched rule conditions also depend. The event log may be searched for the identified prior events. Prior event parameters, corresponding to the identified prior events, may be retrieved from the event log. The rule conditions may be evaluated in view of the current event and the retrieved prior event parameters. Actions may be executed that correspond to the rule conditions triggered in response to the evaluating. Domain specific language expression may be received, processed, and incorporated as rules and facts into the rule implementation system.
US09824311B1
A liquid state machine pulse domain neural processor circuit comprising an asynchronous input filter circuit provided for, at any given time, receiving a series of analog input signals and generating in response a set of time-encoded values that depend on the series of analog input signals received at said given time and before said given time; and an asynchronous trainable readout map circuit for transforming at least a portion of said set of time encoded values into output signals.
US09824304B2
Font recognition and similarity determination techniques and systems are described. In a first example, localization techniques are described to train a model using machine learning (e.g., a convolutional neural network) using training images. The model is then used to localize text in a subsequently received image, and may do so automatically and without user intervention, e.g., without specifying any of the edges of a bounding box. In a second example, a deep neural network is directly learned as an embedding function of a model that is usable to determine font similarity. In a third example, techniques are described that leverage attributes described in metadata associated with fonts as part of font recognition and similarity determinations.
US09824303B2
An image matching method includes: extracting a plurality of feature points from a reference image; selecting a first feature point from the feature points, and selecting a first reference search area comprising the first feature point; setting a first matching candidate search area corresponding to the first reference search area from a target image, and extracting a plurality of feature points from the first matching candidate search area; selecting a second feature point closest to the first feature point in the first reference search area, and selecting a first straight line connecting the first and second feature points; generating a plurality of segments from the feature points extracted from the first matching candidate search area; and determining a first matching straight line matching a length and an angle of the first straight line, from the segments generated from the feature points extracted from the first matching candidate search area.
US09824298B1
Techniques for predicting and detecting produce quality may be provided. For example, visual or infrared characteristics of a produce item (e.g., skin, shape, wrinkles, and other characteristics of an apple, pepper, etc.) may be compared with ripeness characteristics of the type of produce item (e.g., other apples or peppers). The ripeness characteristics may correspond with the type of produce item at different stages of ripeness along a ripeness regression (e.g., a timeline of the produce item from raw to rotten). One or more ripeness scores of the produce item may be determined along a timeline (e.g., raw at day 1, rotten at day 10, etc.), so that when a user requests a produce item corresponding with a particular ripeness score, the produce item can be provided to the user based in part on the visual or infrared characteristics of the produce item and ripeness regression.
US09824295B2
Systems and methods for characterizing an obscurant and imaging a target are disclosed. In one embodiment, a method of imaging a target includes characterizing at least one obscurant present in an environment, and determining, based on the at least one characterized obscurant, one or more of the following: one or more wavelengths corresponding to the at least one obscurant, a polarization state corresponding to the at least one obscurant, and a sensor exposure time corresponding to the at least one obscurant. The method further includes adjusting one or more parameters of an imagining system based at least in part on a characterization of the at least one obscurant.
US09824285B2
A control system for a vehicle includes a forward-viewing camera and an image processor operable to process image data captured by the forward-viewing camera. The control system is operable to detect a traffic light and to determine a change in state of the traffic light from red to green. The control system determines that another vehicle is ahead of the stopped equipped vehicle at the traffic light, and determines a change in state of the traffic light from red to green. Responsive to (a) a threshold period of time elapsing during which the other vehicle ahead of the equipped vehicle has not moved after the traffic light changes state from red to green and/or (b) the other vehicle ahead of the equipped vehicle moving a threshold distance away from the equipped vehicle, the control system (i) generates an alert and/or (ii) controls a vehicle system of the equipped vehicle.
US09824266B2
A handwriting input apparatus and method are provided. The handwriting input apparatus includes: a touch screen configured to display a handwriting corresponding to a touch input; and a processor configured to generate a skeleton for the handwriting by performing text recognition with respect to the handwriting, correct a style of the handwriting based on the generated skeleton, apply a beautification effect to the corrected style of the handwriting, and control the touch screen to display the beautified handwriting.
US09824254B1
A biometric sensing system includes discrete ultrasonic transducers, a first electrode layer disposed over a first surface of the discrete ultrasonic transducers, and a second electrode layer disposed over a second surface of the discrete ultrasonic transducers. The first electrode layer may be a sheet of conductive material that is a common ground connection for the discrete ultrasonic transducers. Alternatively, the first electrode layer can be formed with discrete electrode elements, with a discrete electrode element disposed over the first surface of a discrete ultrasonic transducer. The second electrode layer may be formed with discrete electrode elements, with a discrete electrode element disposed over the second surface of one ultrasonic transducer. At least one integrated circuit can be attached and connected to one of the electrode layers. The integrated circuit includes drive circuits and sense circuits for the discrete ultrasonic transducers.
US09824252B1
A method and structure for a radio frequency identification (RFID) sensor that may be used to monitor various environmental conditions. The environmental condition measured depends on a sensor material used in the RFID sensor. The sensor material is selected based on a flux in electrical conductivity relative to its saturation of the environmental condition being monitored. The sensor material is placed between adjacent electrically conductive structures of the RFID sensor. Upon a change in the environmental condition being measure, the electrical conductivity of the sensor material changes, thereby increasing or decreasing an amplitude of a response by the RFID sensor to an interrogation by an RFID reader.
US09824251B2
Device testing using radio-frequency identification (RFID) is described herein. The testing uses one or more RFID readers that interrogate an RFID tag on a mobile device and, in response to the interrogation, receive data from the RFID tag. The one or more RFID readers, in response to receipt of the data from the RFID tag, transmit a command to execute a test program on the mobile device. The results of the test program are then provided by the mobile device.
US09824248B2
Methods and apparatuses are described for proximity-based and user-based access control using wearable devices. A short-range frequency reader coupled to a target device detects a plurality of wearable devices in proximity to the reader, each wearable device comprising a short-range frequency antenna. The reader identifies, for each wearable device, a user wearing the wearable device. The reader determines, for each wearable device, a distance from the reader and an orientation in relation to the target device. The reader determines a level of access available to the target device based upon the identity of each user, the distance of each wearable device from the reader, the orientation of each wearable device in relation to the target device, and the distance of the wearable devices from each other in a three-dimensional space.
US09824246B2
Disclosed is an RFID tag configured to store a plurality of data and selectively provide a predetermined data of the plurality of data to an RFID reader. The RFID tag includes a radio frequency (RF) interface, a memory, an input unit, and a control unit. The RF interface include an antenna for communication with an RFID reader. The memory is configured to store a plurality of data. The input unit is configured to receive a selection for provision data to be provided to the RFID reader among the plurality of data stored in the memory. The control unit is configured to control the selected data to be provided to the RFID reader through the RF interface when a request for data is received from the RFID reader.
US09824242B2
A storage location of a device that can be configured to act as a master in a particular security mode, such as a Direct Memory Access (DMA) having one or more channels, can be programmed to indicate a security indicator to be provided when configured to operate as a master device.
US09824232B1
Described are techniques for associating messages with a particular portion of media content. A message received from a first device, associated with a portion of media content stored on the first device, may be provided to a second device and stored in association with a corresponding portion of media content on the second device. Content consumption data associated with the second device may indicate whether the second device has previously accessed the portion of the media content. The message may be suppressed from presentation if the second device has not previously accessed the corresponding portion of the media content. The message may be presented to the second device when the corresponding portion of the media content is accessed.
US09824228B2
A system and non-transitory computer program product for preserving data redundancy in a data deduplication system in a computing environment is provided. A selected data segment, to be written through the data deduplication system, is encrypted such that the selected data segment is not subject to a deduplication operation. Copies of the data segment that are to be precluded from data deduplication are determined and identified. A unique encryption key is used to encrypt the selected data segment to be written through the data deduplication system such that the selected data segment is not subject to a deduplication operation. The data deduplication system is tricked to recognize the encrypted, selected data segment as new, undeduplicated data by the encrypting thereby skipping steps of the deduplication operation that includes fingerprint generation and matching. The encrypted, selected data segment is directly written to a new physical storage location.
US09824227B2
An example method of providing simulated control of a third-party database to a client includes receiving, at a simulation control proxy, a query that selects data from a database table stored in a third-party database. The method also includes submitting, over a network, the query to the third-party database. The method further includes loading a set of database records included in an initial result set of the query. The method also includes determining whether a data storage device includes modification data indicating that the initial result set is stale. The method further includes updating the initial result set in accordance with the modification data if the initial result set is stale. The method also includes sending the updated result set of the query to a client. The updated result set of the query is different from the initial result set of the query.
US09824219B2
An electronic system having wake up verification comprises an electronic device and a mobile device. The electronic device wirelessly connects to the mobile device. When the mobile device executes a verification program, the mobile device provides a sampling signal input interface on which a user can input a sampling signal. When the sampling signal is input, the mobile device transforms the sampling signal into sampling data and transmits the sampling data to the electronic device. The electronic device verifies the sampling data. When the sampling data are correct, the electronic device executes an operation system. When the sampling data are incorrect, the electronic device cannot execute the operation system. Therefore, information stored in the electronic device can be protected by two factor authentication to increase reliability for safeguarding information.
US09824217B2
A method for detecting malicious active processes and self replicating executable binary files on a computing device. The method comprises monitoring in runtime active processes running on a computing device, extracting unique identifier(s) of each of the active processes which maps the active process to executable binary file(s) containing executable code of the active process, monitoring in runtime creation and modification of data files hosted by the computing device, identifying executable binary files among the data files, monitoring concurrent operation of logical sensors which detect malicious behavioral patterns of the active processes and maintain one or more lists of malicious behavioral pattern findings, and detecting malicious active process(es) of a malware from the active processes and self-replicating executable binary file(s) of the malicious active process(es) according to a match between the respective unique identifier(s), the malicious behavioral pattern findings and at least one the executable binary files.
US09824213B2
A method and apparatus for assembling a component in a router are provided. The router includes at least one reconfigurable component, the at least one reconfigurable component has a unique function, the method includes: obtaining attribute information of the at least one reconfigurable component in the router, wherein the attribute information comprises information on an importance and/or a using frequency of the at least one reconfigurable component in the router; coding the at least one reconfigurable component based on Huffman Coding to generate a Huffman code according to the attribute information of the at least one reconfigurable component; selecting the at least one reconfigurable component, and assembling the selected reconfigurable component to realize a routing function and to form an assembly code; and generating a routing paradigm table according to a user security requirement and the assembly code, such that the router performs the routing function according to the routing paradigm table.
US09824203B2
Pursuant to at least some embodiments, the present disclosure relates to a method that includes configuring an RFID tag to store information related to a battery charge level of a battery of a peripheral device, reading the RFID tag, and disabling a subsequent reading of the RFID tag in response to determining that the RFID tag includes stored information indicative of the battery charge level being low or depleted.
US09824201B2
A method for a java application to access an intelligent key apparatus. The apparatus comprises: a java application calling a JNI interface; obtaining a corresponding lower level interface function according to a correspondence table of a JNI interface function and the lower level interface function; converting a source parameter list of the JNI interface function into a target parameter list of the corresponding lower level interface function according to the target parameter list of the lower level interface function; calling a lower level interface; accessing an intelligent key apparatus; obtaining a returned result; and returning a value of the returned result to the java application. By means of the method in the present invention, it is not easy to obtain a source code by decompiling a java application, thereby improving the security of the java application accessing an intelligent key apparatus.
US09824194B2
In accordance with the teaching described herein, systems and methods are provided for providing secure access to a software application on a computing device. The software application may include a security framework having a set of predetermined security requirements. Prior to enabling access to the software application by a user, the computing device may, (i) verify installation of a device security configuration profile on the computing device, wherein the device security configuration profile certifies that the software application includes the set of predetermined security requirements, (ii) receive identifying information from the user via a user interface, (iii) verify the identifying information with an authentication server, and (iv) based on a successful verification of the identifying information, receive and store a security token. Access to the software application on the computing device may be provided for a specified period identified by the security token.
US09824192B2
A computer simulation method for a macromolecular material and filler is disclosed, wherein a polymer model of a macromolecular chain of the macromolecular material and a filler model of the filler are defined; and a molecular dynamics calculation is performed using the filler model and the polymer models disposed in a space in order to compute the thickness of an interface layer between the filler and the macromolecular material. To compute the thickness, the space is partitioned into domains bounded by boundary surfaces; relaxation moduli of the domains are computed; and based on a variation of the relaxation moduli of the domains, the thickness of the interface layer is computed.
US09824185B2
Systems and methods are disclosed for managing and storing electronic health records data. In an embodiment, a database module containing a plurality of databases stores a plurality of different types of patient medical data records. Each patient medical data record is composed of one or more categories of data which may be stored in different databases. A server module configured to respond to requests received from a client is connected to the database module. The server module includes a layer of application logic, a layer of composite services, a layer of domain services, and a layer of foundation services. A request received by the server module is first processed by the application logic, then by the appropriate composite services, domain services and foundation services. Domain services may communicate with the database module, generating a response that may be processed by the composite and application logic layers before sending back to the client.
US09824179B2
Methods are described for diagnosis of a lymphoid hematological malignancy in a subject prior to treatment, and for detecting minimal residual disease (MRD) in the subject after treatment for the malignancy, by high throughput quantitative sequencing (HTS) of multiple unique adaptive immune receptor (TCR or Ig) encoding DNA molecules that have been amplified from DNA isolated from blood samples or other lymphoid cell-containing samples. Amplification employs oligonucleotide primer sets designed to amplify CDR3-encoding sequences within substantially all possible human VDJ or VJ combinations. Disease-characteristic adaptive immune receptor clonotypes occur, prior to treatment, at a relative frequency of at least 15-30% of rearranged receptor CDR3-encoding gene regions. Following treatment, persistence of at least one such clonotype at a detectable frequency of at least 10−6 or at least 10−5 receptor CDR3-encoding regions indicates MRD. Improved quantitative embodiments are provided by inclusion of a template composition for amplification factor determination and related methods.
US09824172B1
Implementing circuitry from an application can include determining a data flow of an application including a producer function, a loop construct, and a consumer function and creating a new function including contents of a body of the loop construct. A circuit design can be generated from the application including a producer function circuit block, a new function circuit block, and a consumer function circuit block. Control circuitry for each circuit block can be included within the circuit design. The control circuitry of the new function circuit block can initiate operation of the new function circuit block according to a loop induction variable of the loop construct.
US09824152B1
User activity data describing how a user interacts with recipes posted on a web page or provided by an application is received. A first set of recommended recipes for the user is generated based on the user activity data. A content model that aligns recipe features extracted from the content of the recipes is built based on content of the recipes. A second set of recommended recipes is generated based on the content model. The first set of recommended recipes and the second set of recommended recipes are merged and transmitted for display to the user.
US09824150B2
This invention relates generally to software and computers, and more specifically, to systems and methods for providing information discovery and retrieval. In one embodiment, the invention includes a system for providing information discovery and retrieval, the system including a processor module, the processor module configurable to performing the steps of receiving an information request from a consumer device over a communications network; decoding the information request; discovering information using the decoded information request; preparing instructions for accessing the information; and communicating the prepared instructions to the consumer device, wherein the consumer device is configurable to retrieving the information for presentation using the prepared instructions.
US09824141B2
Embodiments of the present application include an apparatus with at least one processor that is configured to determine whether to electronically publish textual data in an online environment (e.g., the Internet) based on a comparison of a computed numeric likelihood to a set of threshold values. The set of threshold values may include a first threshold value representative of numeric likelihoods assigned to a first portion of reference content suitable for publication in the online environment, and a second threshold value representative of numeric likelihoods assigned to a second portion of the reference content unsuitable for publication in the online environment. The second threshold value may exceed the first threshold value.
US09824138B2
Methods and systems for searching over a large corpus of data to discover relevant information artifacts based on similar content and/or relationships are disclosed. Improvements over simple keyword and phrase based searching over Internet scale data are shown. A search query may be modified or relaxed based on the search terms and a contextual relationship therebetween. The search results may be ranked based on both a data ranking corresponding to the data entries in the corpus and a query ranking corresponding to the search query and/or the modified or relaxed search query. In this manner, the accuracy and relevance of the search results is improved.
US09824135B2
Method for decomposing a complexly shaped object in a data set, such as a geobody (31) in a seismic data volume, into component objects more representative of the true connectivity state of the system represented by the data set. The geobody is decomposed using a basis set of eigenvectors (33) of a connectivity matrix (32) describing the state of connectivity between voxels in the geobody. Lineal subspaces of the geobody in eigenvector space are associated with likely component objects (34), either by a human interpreter (342) cross plotting (341) two or more eigenvectors, or in an automated manner in which a computer algorithm (344) detects the lineal sub-spaces and the clusters within them.
US09824133B1
A multi-tenant system for providing hosted analytic services may be dynamically configured in response to a request from a user. A request for analytic services may comprise an indication of at least one data source to be incorporated into an n-dimensional cube. A data source connector and transformation pipeline may transform data received from the data source to a format compatible with a dimension and hierarchy model of the n-dimensional cube.
US09824130B1
Optimizing synchronization of enterprise content management systems is described. A system identifies multiple synchronization intervals corresponding to multiple synchronization tasks. The system estimates multiple execution times corresponding to the multiple synchronization tasks. The system calculates multiple remaining times corresponding to the multiple synchronization tasks, wherein the multiple remaining times are based on the multiple synchronization intervals corresponding to the multiple synchronization tasks minus the multiple execution times corresponding to the multiple synchronization tasks. The system orders the multiple synchronization tasks for execution based on corresponding multiple remaining times, from a lowest remaining time to a highest remaining time. The system executes a set of the multiple synchronization tasks based on a corresponding set of the multiple remaining times, wherein at least one of the corresponding set of the multiple remaining times equals the lowest remaining time.
US09824121B2
Methods, systems, and computer readable media can provide for aggregating high-rate, large-volume input data streams into low-volume output data streams in real-time. Aggregating high-rate, large-volume data streams into low-volume output data streams can be facilitated by analyzing lossless aggregation relationships among helper views within one or more continuous query tasks and executing conventional queries to derive high-level, low-volume output data streams from low-level, high-volume input data streams.
US09824119B2
The present application is related to a system and method for load balancing and connection multiplexing structured query language (SQL) queries among a plurality of database servers. A device intermediary to a plurality of clients and a plurality of database servers receives an SQL query to access a database provided by the plurality of database servers from a client via a first connection established between the device and the client. The device identifies for the SQL query a policy for selecting among the plurality of servers. The policy includes an expression to identify predetermined data from content of the SQL query. The device may select a server from the plurality of servers based on applying the expression of the policy to content of the SQL query and forward the SQL query to the selected server via a second connection established between the device and the selected server.
US09824118B2
A system and method for querying a database is disclosed. Database tables are represented as nodes in a model. Each node is associated with at least one leaf. The nodes can be interconnected with one another. A model input is received by a server from a client device, the model input including a starting node, one or more leaves, and optionally one or more filters. A query is executed against a database based on the model input. A subsequent query can be generated by selecting a result of the first query. Also disclosed is a technique for cancelling queries.
US09824114B1
Implementations are provided herein for the use of multiple threads in concurrently restriping files by maintaining multiple cursors for a single file. The cursors can be stored and tracked on disk in a mirrored data structure (“MDS”) extension block also referred to as a Cursor Extension Block. During a restripe operation, individual cursors stored in the delta-block portion of the MDS extension block will be updated using delta operations of a file system. The operating system kernel can maintain an in-memory version of the delta-block portion of the MDS extension block as well. The Cursor Extension Block associated with a file can store data representing the ending logical cluster number of the cursor, the current logical cluster number of the cursor, and a current cursor count for a file.
US09824108B2
In accordance with embodiments, there are provided mechanisms and methods for performing transparent object migration across storage tiers. In an embodiment and by way of example, a method for appending data to large data volumes is provided. The method embodiment includes a) setting a CustomEntityOption bit that determines (at object creation time) where the object is stored, either in the relational or the non-relational data store portion, b) loading the CustomEntityOption bit in a cached CustomEntityDefinition, c) showing the CustomEntityOption bit as EntityInfo, and d) allowing custom object definition and Metadata API functionality when the bit is shown.
US09824099B2
An identification method and process for objects from digitally captured images thereof that uses data characteristics to identify an object from a plurality of objects in a database. The data is broken down into parameters such as a Shape Comparison, Grayscale Comparison, Wavelet Comparison, and Color Cube Comparison with object data in one or more databases to identify the actual object of a digital image.
US09824093B1
Systems and methods for maintaining a datacenter are provided. A repair component includes modules that are configured to scan the data objects based on the identifiers of the data objects, identify potential issues or concerns with the data objects, and then repair the issues as they are discovered or over time. The repair component can be run in a non-centralized and highly parallelized manner.
US09824084B2
A computer-implemented method of (600) and a system (222, 208) for processing a text stream. The method comprises accessing (602) the text stream; parsing (604) the text stream; analyzing (606) a first collection of words to identify a homonym candidate; generating (608) a homonym word pattern, the homonym word pattern comprising at least one word of the first collection of words; determining (610), for at least one word of the homonym word pattern, a first context element; generating (612) a homonym context pattern; analyzing (614) a second collection of words to identify a non-homonym candidate having a non-homonym context pattern at least partially matching the homonym context pattern, the non-homonym candidate being associated with a lexical tag; and assigning (616) the lexical tag associated with the non-homonym candidate to the homonym candidate.
US09824083B2
A general-purpose apparatus for analyzing natural language text that allows for the implementation of a broad range of natural language understanding applications. The apparatus for natural language understanding analyzes a source text and transforms the source text into a semantically-interpretable syntactic representation (SISR), comprising a syntax template and semantic clause annotations. The general-purpose apparatus for natural language understanding is adaptable to various source text natural languages and is adaptable to various natural language understanding applications, such as query answering, translation, summarization, information extraction, disambiguation, and parsing. A natural language query answering apparatus for answering questions about a source text, whereby the query answering apparatus utilizes the general-purpose apparatus for transforming the natural language query into SISR format.
US09824078B2
A user terminal device is provided that includes a display part configured to display a document preparation window, an input part configured to receive a selection command for selecting a text in a document displayed in the document preparation window, a communication part configured to connect to a server, and a controller configured to control displaying of an activated search button in a region of the document preparation window when the text is selected, and to search for, when the search button is selected, at least one image corresponding to the selected text using the communication part, wherein the controller is further configured to control displaying of images searched for from at least one of the server and a storage part of the user terminal device, and to, when one of the searched images is selected, insert the selected image at a predetermined position of the document preparation window.
US09824076B2
Embodiments of the invention are directed to systems, methods, and computer program products to enable a user to edit a large text file. In some embodiments, the system is configured to receive a first input from a user, wherein the first input comprises selecting a large text file from an external source; receive a second input from the user, wherein the second input comprises a start line and an end line; retrieve the section of the selected large text file defined by the start line and the end line from the external source and load the retrieved section onto a temporary memory location; initiate presentation of the retrieved section of the selected large text file to the user; and enable the user to edit and save at least a portion of the retrieved section of the selected large text file.
US09824075B1
A system and method for interactive test coverage are disclosed. An example embodiment receives a document object model representation of a user interface page and determines at least one visible and interactive element in the document object model. If there are multiple visible interactive elements, an example embodiment creates a CSS selector for each element. A CSS selector identifies the element by information including ancestry tags from a root node to a leaf node. In one embodiment, a determination is made regarding whether the current CSS selector is similar to previously-stored CSS selectors. An example embodiment stores the CSS selector when no previously-stored CSS selectors are similar. A user interface test is executed and a determination is made as to whether the elements represented by the stored CSS selectors were invoked by the test. Results from the test execution can be displayed to a user via a user interface display.
US09824072B2
Adjusting the layout size of a hyperlink includes displaying at least one hyperlink in a user interface; detecting a touch operation for the at least one hyperlink, and extracting position coordinates of a touch point formed by the touch operation on the user interface. Adjusting the layout size further includes determining a target hyperlink from the at least one hyperlink, and determining the precision of the touch operation with respect to the target hyperlink based on the position coordinates of the touch point; and adjusting layout size of the target hyperlink based on the determined precision. The hyperlink layout in a web page can be adapted to the touch precision of user's finger automatically, which facilitates the recognition of hyperlinks by the user's finger.
US09824067B2
Systems and methods for forecasting a time series data are disclosed. The methods include receiving a historical time-series data including a series data and a non-stationary series data. The historical time-series data is processed to obtain a unified time series data. On the unified time series data, a data distribution is plotted and the data distribution is validated based upon a rate function associated with a Large Deviation Theory (LDT). The unified time series data is split validated into vectors based on autocorrelation function (ACF). The unified time series data is further validated. A mixture of Gaussian distribution models is applied and weights are assigned to each of the Gaussian distribution model. By controlling the weights based upon various what-if scenarios, a resultant Gaussian time series data is generated. The resultant Gaussian time series data indicates forecasted time series data of the historical time series data.
US09824064B2
A system and method which uses pattern recognition in assessing or monitoring a vehicle status and/or an operator's driving behavior. A vehicle, for use by an operator or driver, can be equipped with a data collection and assessment system. The system can comprise one or more data collection devices, e.g., accelerometers, which can be used to capture data and information, or otherwise measure vehicle actions. A pattern recognition module is configured with one or more defined operating patterns, each of which operating patterns reflects either a known change in vehicle status corresponding to, e.g., when a passenger has embarked or disembarked the vehicle, or a known vehicle operating or driving behavior. Information collected as events describing a current vehicle status or a current driving behavior can be compared with the known operating patterns.
US09824059B2
In one example, a host device may identify a serial device connected to the host device to determine a host action. The host device may receive a serial device signal with a child serial device identifier from a serial device bridge. The host device may identify a child serial device based on the child serial device identifier. The host device may execute a host action based on the child serial device.
US09824048B2
A method for effectively transmitting data, in which a switch is connected between a plurality host and storage, comprises steps of the following. First, the hosts recognize the storages via the switch, and revise a data transmission path within an original command, meanwhile transforming it into a specific command. Later, the switch receives the specific command, alternatively revises the data transmission path or not, and transforms the specific command into a standard command. The standard command is then transmitted to the storage. After receiving it, the storage is able to search for a corresponding host based on the data transmission path such that data is simply transmitted between the storage and its corresponding host. By employing the proposed method, the present invention is beneficial to reducing system complexity and raising data transmission efficiency.
US09824046B2
A method of triggering a desired operating mode in a universal serial bus (USB)-compatible client device is provided. A USB-compatible client device detects that it has been coupled to a USB-compatible host device via a USB bus. The USB-compatible client device attempts to pull a data line of the USB bus high. The USB-compatible client device then ascertains that the data line remains pulled low, thereby indicating that the USB-compatible client device should enter a first mode of operation. The USB-compatible client device operates according to the first mode of operation.
US09824045B2
Described examples include USB controllers and methods of interfacing a host processor with one or more USB ports with the host processor implementing an upper protocol layer and a policy engine for negotiating USB power delivery parameters, in which the USB controller includes a logic circuit implementing a lower protocol layer to provide automatic outgoing data transmission retries independent of the upper protocol layer of the host processor. The controller logic circuit further implements automatic incoming data packet validity verification and acknowledgment independent of the upper protocol layer of the host processor.
US09824043B2
A system includes a host device, an external bus and a storage device. A driver is installed in the host device. The external bus is connected with the host device. The external bus supports a communication protocol. The storage device includes a controlling circuit and a non-volatile memory. After the storage device issues a request to the host device according to the communication protocol, a reserved space is created in a host memory of the host device in response to the request, and a device information from the storage device is stored into the reserved space. While the host device issues a first command to operate the storage device, the first command is converted into a second command by the driver according to the device information, and then the second command is transmitted to the storage device.
US09824040B2
In some embodiments, a method includes executing an atomic transaction in a system having a transactional memory. The method includes receiving a signal interrupt during executing of the atomic transaction. The method includes storing a state of the signal interrupt to enable subsequent execution of the signal interrupt. The method includes returning to executing the atomic transaction until the atomic transaction is at least one of completed and aborted. The method includes after executing the atomic transaction is at least one of completed and aborted, determining whether the signal interrupt is received during executing of the atomic transaction. The method includes after determining that the signal interrupt is received during executing of the atomic transaction, retrieving the state of the signal interrupt. The method includes executing an interrupt handler for processing the signal interrupt and returning from executing of the atomic transaction.
US09824038B2
The disclosure includes, in general, among other aspects, an apparatus having multiple programmable units integrated within a processor. The apparatus has circuitry to map addresses in a single address space to resources within the multiple programmable units where the single address space includes addresses for different ones of the resources in different ones of the multiple programmable units and where there is a one-to-one correspondence between respective addresses in the single address space and resources within the multiple programmable units.
US09824035B2
A memory module is operatable in a memory system with a memory controller. The memory module comprises a module control device mounted on the module board to receive command signals from the memory controller and to output module command signals and module control signals, and memory devices mounted on the module board to perform a first memory operation in response to the module command signals. The memory module further comprises a plurality of buffer circuits distributed across a surface of the module board. Each respective buffer circuit is associated with a respective set of the memory devices and includes logic that is configured to obtain timing information based on signals received by the each respective buffer circuit during a second memory operation prior to the first memory operation and to control timing of the data and strobe signals through the each respective buffer circuit in accordance with the timing information.
US09824034B1
Embodiments include method, systems and computer program products for a parallel ordering queue using an encoded command type. In some embodiments, a command may be receive from a receiver of a first bus, wherein the command is to be sent to a second bus. The command may be decoded. The command may be associated with an encoded command type. The command may be placed in an ordering queue. A first entry of a second queue may be popped based on the encoded command type of the first entry of the ordering queue. The first entry of the ordering queue may be removed from the ordering queue.
US09824032B2
Systems and methods for guest page table validation by virtual machine (VM) functions. An example method comprises: storing a first VM function invocation instruction in a first memory page executable from a default memory view of a VM, wherein executing the first VM function invocation instruction switches a page table pointer to a trampoline memory view of the VM; configuring a write access permission, from the trampoline memory view, to a page table comprised by a VM page table hierarchy; storing a second VM function invocation instruction in a second memory page executable from the trampoline memory view, wherein executing the second VM function invocation instruction switches the page table pointer to an alternative memory view of the VM; storing, in the second memory page, validation instructions to validate the VM page table hierarchy; and storing protected instructions within a third memory page executable from the alternative memory view.
US09824030B2
Provided are a computer program product, system, and method for adjusting active cache size based on cache usage. An active cache in at least one memory device caches tracks in a storage during computer system operations. An inactive cache in the at least one memory device is not available to cache tracks in the storage during the computer system operations. During caching operations in the active cache, information is gathered on cache hits to the active cache and cache hits that would occur if the inactive cache was available to cache data during the computer system operations. The gathered information is used to determine whether to configure a portion of the inactive cache as part of the active cache for use during the computer system operations.
US09824020B2
Systems and methods for managing memory in a dynamic translation computer system are provided. Embodiments may include receiving an instruction packet and processing the instruction packet. The instruction packet may include one or more instructions for obtaining a block of virtual memory for use in an emulated operating environment from a slab of virtual memory in a host environment, maintaining a mapping between the block of virtual memory and physical memory when the block is returned to the host environment, and for filling the block of virtual memory with zeros and a pattern based, at least in part, on a detected fill type.
US09824017B2
Provided is a cache control apparatus and method that, when a plurality of processors read a program from the same memory in a chip, maintain coherency of data and an instruction generated by a cache memory. The cache control apparatus includes a coherency controller client configured to include an MESI register, which is included in an instruction cache, and stores at least one of a modified state, an exclusive state, a shared state, and an invalid state for each line of the instruction cache, and a coherency interface connected to the coherency controller and configured to transmit and receive broadcast address information, read or write information, and hit or miss information of another cache to and from the instruction cache.
US09824015B2
Providing memory management unit (MMU) partitioned translation caches, and related apparatuses, methods, and computer-readable media. In this regard, an apparatus comprising an MMU is provided. The MMU comprises a translation cache providing a plurality of translation cache entries defining address translation mappings. The MMU further comprises a partition descriptor table providing a plurality of partition descriptors defining a corresponding plurality of partitions each comprising one or more translation cache entries of the plurality of translation cache entries. The MMU also comprises a partition translation circuit configured to receive a memory access request from a requestor. The partition translation circuit is further configured to determine a translation cache partition identifier (TCPID) of the memory access request, identify one or more partitions of the plurality of partitions based on the TCPID, and perform the memory access request on a translation cache entry of the one or more partitions.
US09824012B2
Providing coherent merging of committed store queue entries in unordered store queues of block-based computer processors is disclosed. In one aspect, a block-based computer processor provides a merging logic circuit communicatively coupled to an unordered store queue and cache memory. The merging logic circuit is configured to select a first store queue entry in the unordered store queue, and read its memory address, an age indicator, and a data value. The age indicator and the data value are stored in merged data bytes within a merged data buffer. The merging logic circuit then locates a remaining store queue entry having a memory address identical to the first selected store queue entry, and reads its age indicator and data value. Based on the age indicator and one or more age indicators of the merged data bytes within the merged data buffer, the data value is merged into the merged data buffer.
US09824006B2
An object-based storage system comprising a host system capable of executing applications for and with an object-based storage device (OSD). Exemplary configurations include a call interface, a physical layer interface, an object-based storage solid-state device (OSD-SSD), and are further characterized by the presence of a storage processor capable of processing object-based storage device algorithms interleaved with processing of physical storage device management. Embodiments include a storage controller capable of executing recognition, classification and tagging of application files, especially including image, music, and other media. Also disclosed are methods for initializing and configuring an OSD-SSD device.
US09824005B1
A leak detection system may be configured to receive a plurality of memory use reports periodically from a user device. The memory use reports may include an indication of memory that may be used and/or allocated by/to a particular process, such as a process that may currently be running on the user device. The memory use report may further provide a relatively granular view of the allocation of memory associated with the process, such as by type of memory and/or category of memory associated with the process. The leak detection system may use the plurality of memory use reports to generate a memory profile associated with the process and particular memory types and/or categories of memory allocation. By analyzing the memory profiles, the leak detection system may be configured to identify a memory leak associated with the process on the user device.
US09823996B2
In some aspects, a debugging application can obtain log data from a target device. The log data can be generated from the execution of object code by the target device. The object code can be generated from assembly code for the target device. For each of multiple program counter entries in the log data, the debugging application can identify a correspondence between the program counter entry and a respective portion of the assembly code and simulate a respective operation performed by the execution of the object code. The simulated operation corresponds to the program counter entry. Simulating the execution can include configuring a display device to display a visual indicator for the portion of the assembly code that caused a given operation. The visual indicator is displayed based on the identified correspondence between a portion of the assembly code and a program counter entry from the log data.
US09823989B2
An apparatus and method of connecting an external device are provided. The method includes connecting the apparatus to the external device when a distance between the external device and the apparatus is less than a reference range; after the external device is connected to the apparatus, continuously maintaining the connection when a distance between the external device and the apparatus is greater than the reference range; and disconnecting the external device from the apparatus when a distance between the external device and the apparatus is greater than a detectable range.
US09823975B2
Determining a summary feature set is disclosed. A plurality of subsegments of a first segment are selected. For each subsegment, a plurality of values by applying a set of functions to each subsegment are computed. From all the values computed for all the subsegments, a first subset of values is selected.
US09823973B1
The described system provides that backend array-based snapshots may be created separately on each site of a cluster, and then the snapshots fixed so as to be consistent and/or otherwise identical among the plurality of sites. The system advantageously allows creation of a consistent cluster-wide snapshot with minimal or no I/O delays. In an embodiment, the system provides for use of a change tracker that tracks the metadata of all the I/Os incoming to the volumes being snapped. When the system wants to create a snapshot on all sites, the change tracker is activated on each site separately for the volumes being snapped. A snapshot is then created on each of the cluster sites/backend storage arrays separately. The change trackers are then ordered to stop tracking. A snapshot fixing procedure is then initiated.
US09823971B2
A data processing apparatus includes a storage unit configured to store plural data processing programs and a corresponding error processing program for when an error occurs with a first data processing program; and a processor configured to record to memory before executing the first data processing program, information of the error processing program that corresponds to the first data processing program; update and record in the memory after the first data processing program ends, information of a second data processing program scheduled to be executed next; and switch to any one among the first data processing program that corresponds to information recorded in the memory and the error processing program, when program processing is started next.