US11316537B2
A fault-tolerant analog computing device includes a crossbar array having a number l rows and a number n columns intersecting the l rows to form l×n memory locations. The l rows of the crossbar array receive an input signal as a vector of length l. The n columns output an output signal as a vector of length n that is a dot product of the input signal and the matrix values defined in the l×n memory locations. Each memory location is programmed with a matrix value. A first set of k columns of the n columns is programmed with continuous analog target matrix values with which the input signal is to be multiplied, where k
US11316518B2
An AND gate comprises: a first input; a second input; an output; and a plurality of field effect transistors, FETs, each having a respective first terminal, a respective second terminal, and a respective gate terminal to which a voltage may be applied to control a conductivity of a respective channel between the respective first terminal and the respective second terminal. The plurality of FETs comprises: a first FET having its first terminal directly connected to the first input, its second terminal directly connected to the output, and its gate terminal directly connected to the second input; a second FET having its first terminal directly connected to the first input, its second terminal directly connected to the output, and its gate terminal directly connected to the output; and a third FET having its first terminal directly connected to the second input, its second terminal directly connected to the output, and its gate terminal directly connected to the output. Also disclosed is a clock divider stage for receiving a first clock signal oscillating at a first frequency and a second clock signal, the second clock signal being an inversion of the first clock signal, and generating a first output clock signal oscillating at half of the first frequency.
US11316516B2
A circuit fault detection apparatus includes an AD conversion circuit, a corrector, first and second determination devices, and a fault detector. The AD conversion circuit detects a voltage corresponding to a current or a voltage applied to the circuit fault detection element, and converts the voltage to a digital value. The corrector corrects a measurement value to a corrected measurement value. The first determination device determines whether or not the electric circuit has the fault, based on a comparison between an uncorrected measurement value and an uncorrected threshold value. The second determination device determines whether the electric circuit has the fault, based on a comparison between the corrected measurement value and a corrected threshold value. The fault detector detects the fault in the electric circuit, based on a condition that at least one of the first or second determination devices determines that the electric circuit has the fault.
US11316501B1
A resampling method based on window function for flexible sampling rate conversion in broadband frequency measurement devices is described. The resampling algorithm can satisfy the requirements of different sampling rates. The frequency responses of the filter in the resampling model based on the Farrow structure are analyzed, and the design criterion of the filter in resampling model is considered. A fractional delay filter design model based on window function method is described. A fractional delay filter matrix, which is expressed by polynomial form, is constructed. Then the expression related to subfilter coefficients is obtained and subfilter coefficients are solved for by the least square method.
US11316499B2
A filter device includes: a common terminal; a first input/output terminal; a second input/output terminal; a first filter connected to a first path that connects the common terminal and the first input/output terminal, and having a passband that is a first band; a second filter connected to a second path that connects the common terminal and the second input/output terminal, and having a passband that is a second band having a frequency range that is different from and does not overlap a frequency range of the first band; a first switch element connected between a first node on the first path between the first filter and the first input/output terminal and a second node on the second path between the second filter and the second input/output terminal; and a second switch element on the second path, which is connected between the second node and the second input/output terminal.
US11316498B2
A reconfigurable microacoustic filter is specified which comprises a ladder-type-like filter topology and a suitably placed adjustable capacitive element.
US11316492B2
A balun includes a first capacitor, a second capacitor, a first inductor, an unbalanced signal port, a first balanced signal port, and a second balanced signal port. The first capacitor and the second capacitor are electrically connected in series between the unbalanced signal port and the first balanced signal port. The first inductor is electrically connected in parallel to the first capacitor and the second capacitor electrically connected in series. A second signal path is electrically connected to a first signal path between the first capacitor and the second capacitor, and the second balanced signal port is electrically connected to the second signal path.
US11316488B2
A gain control system for controlling gain applied to an audio signal includes a power estimator configured to estimate the power of a digital signal derived from the audio signal, a digital gain estimator configured to determine, in dependence on the estimated power, a digital gain which would modify the power of the digital signal so as to reach a target power level, and a gain controller configured to adjust an analogue gain applied to the audio signal in dependence on the determined digital gain.
US11316482B2
In an embodiment, an apparatus includes: a modulator to modulate a first signal; a distortion circuit coupled to the modulator to digitally pre-distort the first signal to compensate for a distortion of an amplifier; a distortion characterization circuit coupled to the distortion circuit to determine the distortion of the amplifier and configure the distortion circuit based on the determined distortion; a mixer coupled to the distortion circuit to upconvert the pre-distorted first signal to a pre-distorted radio frequency (RF) signal; and the amplifier coupled to the mixer to amplify the pre-distorted RF signal and output an amplified RF signal.
US11316480B2
An operational amplifier includes a voltage terminal; a common terminal; a first amplification stage for receiving a differential signal pair to generate a single-end amplification signal; a first buffer for generating a first voltage according to the single-end amplification signal; a first diode for reducing the first voltage to generate a second voltage; a second amplification stage for amplifying the second voltage to generate a third voltage; a voltage stabilizing circuit for stabilizing the third voltage; a second diode coupled between the second amplification stage and the common terminal; a second buffer for generating an output voltage according to the third voltage; and a current mirror coupled to the common terminal, the first amplification stage, the first diode and the second amplification stage.
US11316479B1
This application is directed to methods and devices for an efficient power amplification system. An electronic device includes a first and a second power amplifier that are coupled to a quadrature combiner, a temperature monitoring circuit coupled to the first and second power amplifiers, and a controller coupled to the temperature monitoring circuit. The temperature monitoring circuit is configured to determine a temperature difference between the first and second power amplifiers. The controller is configured to adjust operation of at least one of the first and second power amplifiers to reduce the temperature difference between the first and second power amplifiers.
US11316474B1
A double-balanced mixer, including a coupling transformer, a first diode cascade circuit, a second diode cascade circuit, and a first set of coils, is provided. The coupling transformer receives a first input signal and generates at least one set of signals with opposite voltage phases. The first diode cascade circuit is coupled to the coupling transformer, and generates a first node voltage according to a first set of bias voltages. The second diode cascade circuit is coupled to the coupling transformer, and generates a second node voltage according to a second set of bias voltages. The first set of coils is coupled to the first and second diode cascade circuits, receives the first and second node voltages and a second input signal, and generates an output signal. The first node voltage is equal to the second node voltage.
US11316472B2
A system for use with contaminated land comprises: a region defined by or within the land, the region having a plurality of locations defined therewithin; at each location, one or more apparatus selected from the group comprising: sensor, well, electrode, cathode, injector and vent; an array of photovoltaic cells for producing DC power; a ground-mounted frame supporting the array, the frame having a boundary substantially contiguous with the region and supporting the photovoltaic cells; a fluid distribution system of conduits supported by the frame; a power system for delivering DC power to each of the locations; and a communication system adapted to provide for remote control of the apparatus.
US11316469B1
In accordance with the present invention, a panel cleaning system is provided. In one aspect, the panel cleaning system includes a storage tank containing pressurized air, first and second linear actuators, and a panel-cleaning device wherein the pressurized air contained in the storage tank operates the first and second actuators and the panel-cleaning device to clean PV panels. A further aspect includes sensors associated with the first and second actuators and panel-cleaning device and configured to scan and detect fluid and debris on the PV panels to be removed. Another aspect provides sensors associated with a panel cleaning system and a programmable controller or processor configured to execute instructions stored in a nontransitory computer-readable medium.
US11316468B2
A method and system for cleaning an array of solar panels. The system can include an applicator apparatus configured with a plurality of cleaning devices, and an automatic position system (APS) configured with the applicator apparatus. The APS can include a first and second sensor coupled to the applicator apparatus. A controller coupled to the first and second sensor devices can be configured to adjust a position of the applicator apparatus to maintain the plurality of cleaning devices in a direction facing a solar panel to facilitate a removal of an undesired material from the solar panel, while the applicator apparatus is moved from a first position to a second position. A mobile vehicle can be configured with the applicator apparatus to move along a row of the array of solar panels to perform the method for cleaning.
US11316461B2
A motor control apparatus (2) according to the present disclosure is configured to control motors (#1-#3), automatically acquire identification information of a plurality of encoders (#1-#5), the encoders (#1-#5) being configured to be connected in series under a control of the motor control apparatus (2) and to detect position information of the motors (#1-#3) or position information of a mechanical apparatus configured to be driven by the motors (#1-#3), and store the identification information and the motor control unit in a non-volatile memory (11) in association with each other.
US11316457B2
An inverter type engine generator includes an alternator operable as a motor for starting an engine; a converter composed of a three-phase rectifying bridge circuit, converting three-phase alternating current output from the alternator into direct current, and operatable as a motor driver for driving the alternator when power is supplied from a power source; and a processor and a memory. The upper and lower three sets of elements of the three-phase rectifying bridge circuit of the converter are configured such that upper elements are configured from duty-controllable switching elements and thyristors connected in parallel therewith, and lower elements are configured from duty-controllable switching elements having diodes. The processor and the memory perform turning off the lower elements and controlling the duty of the thyristors while turning off the upper elements so that an output voltage of the three-phase rectifying bridge circuit is reduced, when a detected terminal voltage of the converter exceeds the target voltage.
US11316456B2
A system comprises a generator and an engine coupled thereto. The engine is configured to provide mechanical power to the generator. A controller is coupled to the engine and the generator and is configured to compare an engine operating parameter value to a load demand value indicative of a load exerted by the generator on the engine. The controller determines that the engine operating parameter value fails to match the load demand value. The controller determines an engine operating parameter threshold value at which the engine operating parameter value failed to match the load demand value, and sets the engine operating parameter threshold value as a maximum allowable engine operating parameter value for the engine.
US11316453B2
Provided is a control system and method for a power-driven nail gun, which includes a battery, a motor, a flywheel rotating along with the motor, an impacting member receiving kinetic energy of the flywheel and a nail channel providing a channel for a nail to move along therewith when hit by the impacting member. The method includes utilizing a microcontroller to provide a pulse width modulation (PWM) signal for a driving circuit to drive the motor based on the PWM signal; and in response to reaching a target rotation speed by the motor, utilizing the microcontroller to output a corresponding PWM duty to the driving circuit based on the voltage of the battery, to make the motor maintain at the target rotation speed. The nails obtain stable and consistent kinetic energy and stability of nail firing is effectively improved.
US11316450B2
A brushless motor includes: a stator having a three-phase winding; a rotor that has a permanent magnet; an inverter that supplies an AC current to the three-phase wiring by turning on or turning off a plurality of switching elements; and a control part that controls an ON or OFF state of the plurality of switching elements by switching a power distribution pattern that represents a change of a power distribution state of each phase of the three-phase wiring in response to a rotation of the rotor to a low-speed power distribution pattern in use for a low-speed power distribution control or a high-speed power distribution pattern in use for a high-speed power distribution control, wherein the control part switches the power distribution pattern to the low-speed power distribution pattern in a case where a rotation speed of the rotor is less than a predetermined threshold value, and the control part switches the power distribution pattern to the high-speed power distribution pattern when a state in which a load of the rotor is within a predetermined range is continued for a predetermined period of time in a case where the rotation speed of the rotor is equal to or more than the threshold value.
US11316433B2
A power conversion device includes a first bridge circuit, a second bridge circuit, and an inductance element connected between a first AC terminal of the first bridge circuit and a second AC terminal of the second bridge circuit. The controller calculates a passing current passing through the inductance element based on a difference between a first alternating current flowing between the first AC terminal and the inductance element and a second alternating current flowing between the second AC terminal and the inductance element, and detects a first DC component included in the passing current. The controller changes a duty in at least one of the first AC voltage and the second AC voltage to cancel the detected first DC component, the duty being a ratio of a positive potential period and a negative potential period.
US11316431B2
A concentration control circuit can include: a voltage feedback circuit configured to generate a current reference signal representing an error between a voltage reference signal and an output voltage feedback signal shared by each of a plurality of power stage circuits of a multi-phase power converter to adjust a respective phase current; and a clock signal generation circuit configured to generate a clock signal to adjust at least one of switching frequency and phase of each of the power stage circuits, where the clock signal is adjusted in accordance with a change of the current reference signal.
US11316425B2
A cascade multiplier includes a switch network having switching elements, a phase pump, and a network of pump capacitors coupled with the phase pump and to the switch network. The network of pump capacitors includes first and second capacitors, both of which have one terminal DC coupled with the phase pump, and a third capacitor coupled with the phase pump through the first capacitor.
US11316424B2
An apparatus for power conversion includes a transformation stage for transforming a first voltage into a second voltage. The transformation stage includes a switching network, a filter, and a controller. The filter is configured to connect the transformation stage to a regulator. The controller controls the switching network.
US11316423B2
Various embodiments include a half-bridge comprising: a first power semiconductor; a second power semiconductor connected in series with the first power conductor; a controller for the power semiconductors; a line starting at connection node of the power semiconductors; and a meter for measuring the current in the line. The controller is configured to: compare the current with an upper threshold value and a lower threshold value; switch off the first power semiconductor if the upper threshold value is reached; switch on the second power semiconductor after a first dead time has elapsed; and switch off the second power semiconductor if the lower threshold value is reached; and switch on the first power semiconductor after a second dead time has elapsed.
US11316422B1
A station-to-station synchronous and interleaved phase system for multiple DC or AC power supplies connected in parallel includes a master and a plurality of slaves. The master and the slaves each includes a time base selector, a time base generator, a station-to-station synchronization and interleaved phase controller, a local interleaved phase controller and multiple sets of switching circuits, so that the switching circuits are controlled by the local interleaved phase controller to form interleaved phases, and the time base selector and the station-to-station synchronization and interleaved phase controller further control the station-to-station phases between the master and the slaves, and further generate synchronization and interleaved phases between the master and the slaves. In addition to the advantages of increasing the equivalent operating frequency, it can reduce the rate of ripples and increase the response speed.
US11316420B2
A circuit includes first and second transistors, an adaptive bias current source circuit, and an adaptive resistance circuit. The first transistor has a control terminal and first and second current terminals. The control terminal of the first transistor being a first input to the circuit. The second transistor has a control terminal and first and second current terminals, and the control terminal of the second transistor is a second input to the circuit. The first and second inputs are differential inputs to the circuit. The adaptive bias current source circuit is coupled to the second current terminal of the first transistor. The adaptive resistance circuit is coupled between the second current terminal of the second transistor and the adaptive bias current source circuit.
US11316418B2
A rotary encoder includes a rotor and a stator. The rotor and the stator are arranged in the rotary encoder such that, when the rotary encoder is arranged on a machine that includes a shaft having a rotation axis, a rotation of the rotor in relation to the stator about the rotation axis of the shaft is allowed, a relative movement between the rotor and the stator along the rotation axis of the shaft is restricted to a predetermined distance, and a movement of the rotor in relation to the shaft along the rotation axis of the shaft is allowed. Additionally, movement of the stator in relation to the machine along the rotation axis of the shaft may be allowed.
US11316417B2
A Rotor of a claw pole machine (12), having a rotor winding (5), which is surrounded by pole fingers of claw poles, for generating an excitation field, and having permanent magnets (8, 10), wherein two permanent magnets (8), which are arranged offset in the circumferential direction and have a magnetization in the circumferential direction, are allocated to a pole finger (3) in the axial direction next to the pole finger, a magnetic flux guiding element (9) being arranged between the two permanent magnets (8).
US11316412B2
A motor includes an annular sensor magnet rotated integrally with a rotation shaft of a rotor by a bushing, and a rotation detector arranged opposed to the sensor magnet to detect rotation information of the rotor. The bushing includes an annular fixing portion, which is fixed to the rotation shaft, and an extension, which extends from the fixing portion in an axial direction of the rotation shaft and is embedded in the sensor magnet. The extension includes an axial engagement portion engaged with the sensor magnet in the axial direction inside the sensor magnet.
US11316385B2
An example operation may include one or more of determining an energy state of a system, generating a wireless energy transfer request based on the energy state, transmitting the wireless energy transfer request to another system, receiving wireless energy transfer information from the other system, performing a wireless energy exchange with the other system based on the wireless energy transfer information, and receiving a data block associated with the wireless energy exchange from the other system.
US11316379B2
A wireless charging system is provided. The wireless charging system includes: a wireless charging device and a wireless powered device. The wireless charging device includes a light emitter configured to emit infrared light. The wireless powered device includes a surface with a light receiver disposed thereon, where the light receiver is configured to receive the infrared light emitted from the light emitter. The light receiver is further configured to convert light energy of the received infrared light into electrical energy and supply the electrical energy to power the wireless powered device.
US11316377B2
Wireless transceiver devices are disclosed herein that enhance and otherwise extend the wireless power transmission range of a retrodirective wireless power transmission system. The wireless transceiver devices can be configured to operate, in whole or in part, as additional wireless power transmission systems enhancing range of the retrodirective wireless power transmission system and/or delivering supplemental wireless power to devices within range.
US11316373B2
A wireless power transmission method of control where an electrical parameter of a resonant circuit, which is part of a transmitter antenna tuning and coupling unit, determines in some part the regulation current level target or power level target of the resonant circuit. By using an electrical parameter of a resonant circuit to establish a current or power regulation level of the resonant circuit, a maximum limitation is established for the electrical current and voltage of the antenna tuning and coupling unit in order to operate the electrical elements within safe design limits. Additionally, energy is managed entering the transmitter antenna tuning and coupling unit for variable load at the receiver.
US11316365B2
A system includes a converter unit and a power distribution unit (PDU) having at least one power outlet, a first power port configured to be coupled to an AC power source and second power port coupled to the converter unit. The PDU is further configured to selectively provide power to the at least one outlet from the first and second power ports. The PDU may include a power strip with an elongate enclosure and a plurality of receptacles at a face of the enclosure, and the converter may include a rack mountable converter unit coupled to the power strip by a power cable and a communications cable. The rack mountable converter unit may include an inverter and a battery.
US11316343B2
Embodiments provide capabilities by which a user provides interactive inputs for allocating use of the available power budget of an IHS (Information Handling System) when a conflict in the power budget is detected. The power demand of the IHS processor(s) is monitored. When a USB device is coupled to the IHS, a power output to the USB device is enabled within the available power budget. Upon detecting an increase in the power demand of the processor, the power budget may be exceeded. The user is then prompted to specify whether to prioritize use of the power budget for performance of the IHS or for charging the USB device. Based on inputs provided by the user, the processor may be throttled or the power output to the USB device may be reduced. The user is thus provided a capability for resolving individual power budget conflicts based on the user's current preferences.
US11316341B2
Disclosed are a surge protection power supply clamping circuit, a chip and a communication terminal. The power supply clamping circuit comprises at least one driving unit and discharging unit; the discharging units are connected to the corresponding driving units respectively, and the driving units are connected to the same time delay unit respectively; the time delay units and the discharging units are connected to a power supply voltage and a ground line respectively. The driving units or the discharging units are sequentially controlled in the power supply voltage wiring direction, so that the sum values of an equivalent conduction resistance and an equivalent metal wiring resistance of respective discharging units are the same, and therefore, the uneven conduction of an NMOS transistor caused by different metal wiring resistances due to different metal wiring lengths of the NMOS transistor of each discharging unit can be counteracted.
US11316338B2
The present disclosure relates to a device for supplying energy to at least one intrinsically safe load in a potentially explosive area, the device including: a housing with an electrical input and with at least one electrical output, the housing is encapsulated in a pressure-proof manner, the electrical input encapsulated in a pressure-proof manner, and the at least one electrical output being intrinsically safe; an ignition protection module arranged in the housing and electrically connected to the electrical input and to the at least one electrical output, wherein the ignition protection module converts an electrical voltage present at the electrical input into an intrinsically safe electrical voltage and provides it at least one electrical output there, wherein the ignition protection module converts an electrical current present at the electrical input into an intrinsically safe electrical current and provides it at the at least one electrical output there.
US11316332B2
The present invention discloses a bracket (1) with enhanced loadbearing capacity for power transmission poles wherein protrusions (52) extending from loadbearing plates (12, 13) are inserted into horizontal and parallel slots made in the base plate (11), and protrusions (52) are bent behind the base plate (11). After insertion and bending, protrusions (52) portion of loadbearing plates (12, 13) are secured by welding on both sides namely the front and rear of the base plate (11). The bending of protrusions of loadbearing plates (12, 13) behind the base plate (11) and welding it on both sides considerably improve the strength of the joint, and thus the loadbearing capacity of the bracket is significantly enhanced.
US11316317B2
A multi-wavelength laser device equipped with a linear cavity along which a first direction and a second direction opposite to the first direction are defined is disclosed. The apparatus includes, along the first direction, a first optical component, a gain and Raman medium, a sum frequency generation crystal, a first second-harmonic generation crystal and a second optical component. The first optical component allows a pumping light to transmit therethrough and be incident in the first direction. The gain and Raman medium receives the pumping light from the first optical component and generates a first infrared base laser light having a first wavelength and a second infrared base laser light having a second wavelength. The first and second optical components form a laser cavity for oscillation of these two infrared base laser lights. The sum frequency generation crystal receives the first and second infrared base laser lights and generates a first visible laser light having a third wavelength. The first second-harmonic generation crystal receives the first infrared base laser light and generates a second visible laser light having a fourth wavelength. The second optical element allows the first and the second visible laser lights to emit out along the first direction.
US11316310B2
An electrical connector includes an insulating housing, a center ground plate fastened in the insulating housing, a strengthening ground strap, and a terminal assembly fastened in the insulating housing. The strengthening ground strap is fastened to the insulating housing. The strengthening ground strap has a front slice and two lateral slices. The front slice is fastened to a front surface of the center ground plate. The top edge of the front slice is higher than a top surface of the center ground plate. A bottom edge of the front slice projects beyond a bottom surface of the center ground plate. The two lateral slices are disposed to two opposite sides of the center ground plate. The terminal assembly includes a plurality of high speed terminals disposed among the front slice and the two lateral slices.
US11316299B2
In a particular implementation, an electric power device includes a body, a receptacle configured to receive a plug, and a source connector configured to be coupled to a power source. The electric power device further includes a casing coupled to the body and movable with respect to the body between a first position in which the casing defines an enclosed chamber and access to the receptacle is inhibited and a second position in which the casing is configurable to enable access to the receptacle for receipt of the plug. A transition from the first position to the second position is configured to cause the receptacle to be electrically decoupled from the source connector when the casing is at the second position, and a transition from the second position to the first position is configured to cause the receptacle to be electrically coupled to the source connector when the casing is at the first position.
US11316298B1
Provided is a safety socket, including a first conductive seat, a second conductive seat, a first terminal, a first insulator, a second terminal, a second insulator, a first conductive sheet and a second conductive sheet. The first conductive seat includes a first elastic body. The first elastic body includes a first elastic connecting portion and two first elastic pieces. Both ends of the first elastic connecting portion are respectively integrally formed with the bottom ends of the first elastic pieces. The second conductive seat includes a second elastic body and a second socket terminal. The second elastic body includes a second elastic connecting portion and two second elastic pieces. Both ends of the second elastic connecting portion are respectively integrally formed with the bottom ends of the first elastic pieces. The elastic body can be reset by its own elastic force without a spring.
US11316297B2
An electrical plug connector includes a metallic shell, an insulated housing in the metallic shell, plug terminals held in the insulated housing, and a hook member. Hook portions of the hook member extend into the insertion cavity of the insulated housing. Each hook portion forms a first positioning portion and a second positioning portion. When the electrical plug connector is mated with an electrical receptacle connector, the electrical plug connector can be positioned with the electrical receptacle connector through multiple contacts, thereby preventing the electrical plug connector from shaking.
US11316294B2
Miniaturized electrical connector systems are disclosed herein. In exemplary aspects disclosed herein, the connector system includes a twinaxial female connector having a housing and at least one dielectric positioned therein. The at least one dielectric defines two parallel channels configured to receive at least a portion of two conductors of a twinaxial cable. The twinaxial female connector includes an oval interface configured to orient and align the conductors of the twinaxial cable with mating pins of a male connector. The twinaxial female connector further includes two spring-type interconnects positioned within the oval interface, each configured to directly contact a conductor of the twinaxial cable and a mating pin of the male connector. The twinaxial female connector further includes a retaining clip attached to an exterior of the housing with a lever arm biased towards and pivotable from an engaged orientation. Such features reduce the manufacturing complexity, cost, and overall size.
US11316291B2
A board mounting type connector includes a housing, a plurality of contact portions to be extending from the housing toward a circuit board, and a plurality of protrusions to be protruding from the housing toward the circuit board. The plurality of contact portions are aligned along a width direction at a first position in a fitting direction. The connector and a mating connector are to be fit each other in the fitting direction. The width direction intersects the fitting direction. The plurality of protrusions are aligned along the width direction at a second position in the fitting direction. A distance between the first position and a position of a center of gravity of the connector in the fitting direction is longer than a distance between the second position and the position of the center of gravity in the fitting direction.
US11316277B2
This application provides implementations related to lenses. In one implementation, a lens comprises a substrate layer and a metal layer, wherein at least one surface of the substrate layer is a concave surface or a convex surface; the metal layer exists on the at least one surface of the substrate layer; the metal layer comprises a metal part and a hollow-out part, and the metal part or the hollow-out part is presented by using a graphics array; the graphics array comprises a plurality of first rings, the first ring comprises a plurality of graphic units, and a larger ring encircles a smaller ring in the plurality of first rings; and at least one of the following are different: size of graphic units comprised in two adjacent first rings, rotation angle of graphic units comprised in two adjacent first rings, or two adjacent first intervals, wherein the first interval is an interval between the two adjacent first rings.
US11316274B2
A semiconductor device package includes a substrate, a first molding compound and antenna layer. The substrate has a first surface and a second surface opposite to the first surface. The first molding compound is disposed on the first surface of the substrate. The antenna layer is disposed on the first molding compound. The substrate, the first molding compound and the antenna layer define a cavity.
US11316267B2
The present disclosure describes an antenna mount kit. The antenna mount kit includes an antenna mount and a pipe clamp coupled to the antenna mount. The pipe clamp includes a front shell half and a rear shell half, the front shell half and the rear shall half having a front shell half inner surface and a rear shell half inner surface configured to cooperate with each other such that the mounting structure can be secured within the pipe clamp, at least two threaded bolts, a plurality of washers, and a plurality of nuts. The antenna mount kit may further include at least two isolation fasteners. The front shell half inner surface and the rear shell half inner surface each include a plurality of jagged teeth formed of a non-metallic material, at least two front shell bolt apertures through the front shell half, and at least two rear shell half bolt apertures through the rear shell half. The front shell half bolt apertures align with the rear shell half bolt apertures when securing the mounting structure within the pipe clamp. Antenna mount assemblies and methods for reducing external passive intermodulation from an antenna mount kit are also provided.
US11316260B2
An antenna arrangement for an aircraft for fastening to an outer side of an exterior skin of the aircraft has a body and side wall sections and a connecting section. The body is U-shaped or H-shaped if viewed from a predefined direction and can be flowed through with a low aerodynamic drag by a flow along the predefined direction. The antenna arrangement has one or more antennas in the form of a printed circuit board and of which each is fastened to the body and is fastenable directly to the outer side of the aircraft exterior skin at two first edges of the side wall sections which form two free ends of the U-shape or H-shape on a first side of the connecting section or, for the U-shape, on the connecting section and/or regions of the side wall sections, which regions adjoin the connecting section directly as the predefined direction is parallel to the flow direction during flight.
US11316255B2
An antenna comprising a metal frame and at least one resonating structure. The metal frame includes a first radiating element and a second radiating element. The first radiating element includes a radiation arm coupled to a feedpoint. The second radiating element includes a suspended radiation arm. Each resonating structure includes a suspended radiation arm and a resonating component, and the suspended radiation arm is coupled to a ground point by using the resonating component.
US11316254B2
A multicell access method using beamforming in a wireless communication system is provided. In the method for operating a terminal, an access procedure for accessing a first base station using a first antenna and accessing a second base station using a second antenna is performed. Communication with the first base station is performed using the first antenna. Communication with the second base station is performed using the second antenna.
US11316246B2
There are provided an antenna device with improved antenna performance while suppressing a decrease in yield and a decrease in viewability, and a display device including the same. The antenna device includes an antenna substrate, a first antenna pattern formed on a first main surface of the antenna substrate, and a second antenna pattern formed on a second main surface opposite to the first main surface of the antenna substrate. The first antenna pattern and the second antenna pattern are formed such that positions on the front and back of the antenna substrate coincide with each other, and at least a part of the antenna substrate is transparent to transmit an image.
US11316245B2
The present disclosure relates to base station antennas. One example base station antenna includes at least two antennas, at least two outer cover structures, a fastening assembly, a connection assembly, and an upper cover, and each antenna is independently packaged in a radome. The fastening assembly includes a pole and a base. A bottom of the pole is mounted on the base. The connection assembly includes an antenna connection assembly, an outer cover connection assembly, and a pole connection assembly. The pole connection assembly is disposed on the pole, a top of the antenna is connected to the pole by using the antenna connection assembly and the pole connection assembly, and a bottom of the antenna is fastened on the bottom of the pole. Each of the outer cover structures is connected to the pole by using the outer cover connection assembly and the pole connection assembly.
US11316239B2
The present invention features a waveguide transition. A waveguide transition is used to join two dissimilar segments of waveguide, in this case coplanar waveguide to rectangular waveguide, and vice-versa. Care taken during the design of the waveguide transition ensures that the reflection of electromagnetic waves, which may be traveling along the coplanar waveguide segment and toward the waveguide transition and subsequent rectangular waveguide segment, is minimized.
US11316238B2
A film transmission line includes a dielectric layer including at least one of a liquid crystal polymer (LCP) structure or a cyclo olefin polymer (COP) structure, and an electrode line on the dielectric layer. A signal loss level (S21) defined of the film transmission line is −1.5 dB or more at a frequency in a range from 20 GHz to 30 GHz. The film transmission line may be applied to a high frequency thin film antenna and an image display device.
US11316231B2
In accordance with at least selected embodiments, the present disclosure or invention is directed to improved battery separators, high conductance separators, improved lead-acid batteries, such as flooded lead-acid batteries, high conductance batteries, improved systems, and/or, improved vehicles including such batteries, and/or methods of manufacture or use of such separators or batteries, and/or combinations thereof. In accordance with at least certain embodiments, the present disclosure or invention is directed to improved lead acid batteries incorporating the improved separators and which exhibit increased conductance. Particular, non-limiting examples may include lead acid battery separators having structure or features designed to improve conductance, lower ER, lower water loss, and the like.
US11316226B2
A battery module includes: a cell stack including a first surface being a surface on one end in the first direction, a second surface being a surface on the other end in the first direction, a third surface being a surface on one end in a second direction that is a direction orthogonal to the first direction, a fourth surface being a surface on the other end in the second direction, a fifth surface being a surface on one end in a third direction orthogonal to the first direction and the second direction, and a sixth surface being a surface on the other end in the third direction; and a restraining member that restrains the cell stack. The restraining member includes: a pair of restraining plates restraining the cell stack in the first direction; and a pair of sandwiching plates sandwiching the cell stack in the third direction.
US11316225B2
A battery container is adapted to be disposed at a battery charging station for containing a battery which has a charging port. The battery container includes a container body, a floating connector, and a coupling board. The container body includes a rear wall that is formed with a through hole. The floating connector extends movably through the through hole of the rear wall. The coupling board is secured co-movably to the floating connector and is slidable on the rear wall. The floating connector and the coupling board are movable relative to the container body and along a plane parallel to the rear wall when the battery is inserted into a receiving space of the container body to electrically connect the charging port of the battery to the floating connector.
US11316216B2
A modular heat exchanger for battery thermal management having a plurality of similarly constructed heat exchange elements affixed to a cover plate and fluidly coupled with one another via a single external manifold structure that functions as both an inlet manifold and an outlet manifold for each of the heat exchange elements. Rigidity is improved with alternating tabs or overlapping tabs between adjacent elements, and/or side edges between adjacent elements having cutouts for receiving stiffening ribs formed in the cover plate. The external manifold structure provides additional stiffening for the interconnected heat exchange elements.
US11316209B2
The present invention relates to an arrangement 10 comprising plural electric battery cell modules. Each of the electric battery cell modules comprises at least one electric battery cell 12 and a module antenna 14. The arrangement further comprises a transmission line 16 operative as an antenna. The arrangement 10 is configured to provide near field electromagnetic coupling of data between the transmission line 16 and each of the plural battery cell modules by way of the module antenna 14.
US11316205B2
A lithium ion secondary battery includes at least a positive electrode, a separator, a first intermediate layer, a second intermediate layer, and a negative electrode. The separator is arranged between the positive electrode and the negative electrode. The first intermediate layer is arranged between the separator and the negative electrode. The second intermediate layer is arranged between the first intermediate layer and the negative electrode. The first intermediate layer and the second intermediate layer are each a porous layer. The first intermediate layer contains at least a metal organic framework. The second intermediate layer is electrically insulating.
US11316200B2
A method for drying and purifying a lithium bis(fluorosulfonyl)imide salt. Also, a method for producing a lithium bis(fluorosulfonyl)imide salt which is then dried and purified by the method. Further, a composition containing lithium bis(fluorosulfonyl)imide salt having a water content by mass of between 5 and 45 ppm. And, the use of the composition C in Li-ion batteries.
US11316194B2
The present invention relates to a gel polymer electrolyte composition and a lithium secondary battery including the same, and particularly, to a gel polymer electrolyte composition, in which flame retardancy is improved by including an ionic liquid, instead of a non-aqueous organic solvent, as well as a lithium salt, a polymerization initiator, and an oligomer having a specific structure, and a lithium secondary battery in which high-temperature stability is improved by including the same.
US11316193B2
A lithium borosilicate composition, consisting essentially of a system of lithium oxide in combination with silicon oxide and boron oxide, wherein said lithium borosilicate comprises between 70-83 atomic % lithium based on the combined atomic percentages of lithium, boron and silicon, and wherein said lithium borosilicate is a glass, is disclosed.
US11316191B2
An electrochemical cell for a secondary battery, preferably for use in an electric vehicle, is provided. The cell includes a solid metallic anode, which is deposited over a suitable current collector substrate during the cell charging process. Several variations of compatible electrolyte are disclosed, along with suitable cathode materials for building the complete cell.
US11316182B2
A fuel cell module has: a first stacked body including a plurality of unit cells stacked on each other; and a second stacked body including a plurality of magnetic body sheets stacked on each other. The magnetic body sheets includes a coil. The first stacked body is superposed on the second stacked body so as to be electrically connected to the coil. A conductor serving as a part of the coil is embedded in each magnetic body sheet. The conductor has a first end portion and a second end portion exposed from surfaces of each magnetic body sheet on opposite sides from each other. The first end portion of the conductor of one of a set of magnetic body sheets adjacent to each other, among the magnetic body sheets, contacts the second end portion of the conductor of the other of the set of magnetic body sheets.
US11316178B2
A checking method of a resin-framed membrane electrode assembly includes checking whether there is breakage in one of short sides of a first rectangular peripheral shape of a clearance provided in the resin-framed membrane electrode assembly without checking whether there is breakage in any other part of the clearance, the resin-framed membrane assembly including a solid polymer electrolyte membrane, a gas diffusion layer provided on the solid polymer electrolyte membrane, and a resin frame member that has a second rectangular peripheral shape and surrounds the solid polymer electrolyte membrane and the gas diffusion layer to provide the clearance between the resin frame member and the gas diffusion layer, the solid polymer electrolyte membrane being made from a solid polymer electrolyte membrane roll in which a solid polymer electrolyte membrane sheet is wound in a winding direction, long sides of the rectangular peripheral shape extending in the winding direction.
US11316177B2
A fuel cell joint separator includes a passage bead and an outer bead. In a dual seal section where the passage bead and the outer bead extend next to each other, a ridge protruding from one surface of a metal separator is formed integrally with the metal separator, between the passage bead and the outer bead. The height of the ridge is smaller than the height of the bead seal compressed by the tightening load. A joining line is provided between the outer bead and the ridge.
US11316174B2
A fuel cell stack for providing uniform fluid flow through a plurality of plates is provided. The fuel cell stack includes a plurality of plates that define a plurality of fuel cells stacked with each other, each plate having a fuel inlet hole for receiving fuel and a fuel outlet hole for discharging fuel. The fuel cell stack includes a fuel inlet insert extending into the fuel inlet hole of at least some of the plurality of plates. The fuel inlet insert has an upstream end and a downstream end relative to a direction of fuel flow through the fuel inlet holes. The upstream end of the fuel inlet insert has a porosity and permeability less than a porosity and permeability of the downstream end of the fuel inlet insert such that the fuel insert provides uniform fuel flow through the plurality of plates.
US11316171B2
A fuel cell bipolar plate (BPP) includes a metal substrate having a bulk portion and a surface portion comprising an anticorrosive, conductive material having oxygen vacancies and a formula (I): MgTi2O5-δ (I), where δ is any number between 0 and 3 optionally including a fractional part denoting the oxygen vacancies, the material having an electronic conductivity of about 2-10 S/m at room temperature in an ambient environment.
US11316170B2
A redox flow battery cell includes: an electrode to which an electrolyte solution is supplied; and a bipolar plate with which the electrode is arranged, wherein the bipolar plate has at least one groove portion through which the electrolyte solution flows, on a face on the electrode side, the electrode is made of a carbon fiber aggregate containing carbon fibers, and has a buried portion that is pressed toward the bipolar plate side and buried into the groove portion, and an amount of burial of the buried portion is not less than 0.2 mm and not more than 1.4 mm.
US11316169B2
Described herein are methods of forming an electrocatalyst structure on an electrode, comprising depositing a first layer on the electrode using atomic layer deposition (ALD), wherein the first layer comprises a plurality of discrete nanoparticles of a first electrocatalyst, and depositing one or more of a second layer on the first layer and the electrode using ALD, wherein the one or more second layer comprises a second electrocatalyst, wherein the first layer and the one or more second layers, collectively, form a multi-layer electrocatalyst structure on the electrode. Also described are electrodes having a multi-layer electrocatalyst structure. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
US11316167B2
The present application relates to an anode electrode and an electrochemical device containing the same. The anode electrode comprises: a current collector, including a first surface and a second surface opposite to the first surface; an insulation layer being disposed on a peripheral portion of the first surface and/or a peripheral portion of the second surface; and a protection layer being disposed on the insulation layer and covering the first surface and/or the second surface. According to an embodiment of the present application, the insulation layer and the protection layer are disposed in the anode electrode of the electrochemical device to construct a seal cavity, which defines a space of the deposition of lithium metal on the anode electrode, thereby resolving the safety problem caused by the irregular deposition of the lithium metal.
US11316165B2
There is provided a solid-state battery layer structure which may include an anode current collector metal layer, an anode layer arranged on the anode current collector metal layer, a solid electrolyte layer arranged on the anode layer laterally, a cathode layer arranged on the solid electrolyte layer, and a cathode current collector metal layer, and a plurality of nanowire structures comprising silicon and/or gallium nitride, wherein said nanowire structures are arranged on the anode layer and, wherein said nanowire structures are laterally and vertically enclosed by the solid electrolyte layer, wherein the anode layer comprises silicon and a plurality of metal vias connecting the plurality of nanowire structures with the anode current collector metal layer. Methods for producing solid-state battery layer structures are also provided.
US11316164B2
Batteries include an anode structure, a cathode structure, and a conductive overcoat. The anode structure includes an anode substrate, an anode formed on the anode substrate, and an anode conductive liner that is in contact with the anode. The cathode structure includes a cathode substrate, a cathode formed on the cathode substrate, and a cathode conductive liner that is in contact with the cathode. The conductive overcoat is formed over the anode structure and the cathode structure to seal a cavity formed by the anode structure and the cathode structure. At least one of the anode substrate and the cathode substrate is pierced by through vias that are in contact with the respective anode conductive liner or cathode conductive liner.
US11316160B2
A supercapacity lithium ion battery cathode material, a preparation method therefor and an application thereof. The supercapacity lithium ion battery cathode material consists of a transition metal-containing lithium ion cathode material and carbon which is coated on the surface of the lithium ion cathode material. The transition metal on the surface of the lithium ion cathode material is coordinated with carbon by means of X—C bonds to form transition metal-X—C chemical bonds, such that carbon stably coats the surface of the cathode material, wherein C is SP3 hybridization and/or SP2 hybridization, and X is at least one selected from among N, O and S. The supercapacity lithium ion battery cathode material connects the lithium ion cathode material and the carbon by means of the transition metal-X—C chemical bonds, and utilizes the transition metal-X—C chemical bonds to repair boundary of lattices on the surface of the cathode material, such that an interface between the lithium ion cathode material and a carbon layer can be optimized, to form an interface that can store Li, thereby increasing the per gram capacity of the cathode material, and laying the foundation for preparing a supercapacity lithium ion battery.
US11316147B2
A negative electrode active material includes: particles of negative electrode active material, the particles of negative electrode active material contain particles of silicon compound containing a silicon compound (SiOx:0.5≤x≤1.6); the particles of silicon compound contain at least one kind or more of Li2SiO3 and Li4SiO4; the particles of negative electrode active material contain Li2CO3 and LiOH on a surface thereof; and a content of the Li2CO3 is 0.01% by mass or more and 5.00% by mass or less relative to a mass of the particles of negative electrode active material and a content of the LiOH is 0.01% by mass or more and 5.00% by mass or less relative to the mass of the particles of negative electrode active material. Thus a negative electrode active material is capable of improving initial charge/discharge characteristics and the cycle characteristics when used as a negative electrode active material of the secondary battery.
US11316144B1
Systems, methods, and computer-readable media are disclosed for lithium-ion batteries with solid electrolyte membranes. In one embodiment, a battery cell may include a copper current collector, a first layer in contact with the copper current collector, the first layer comprising polyvinylidene fluoride, an anode comprising a first lithiated polymer binder configured to conduct lithium ions, where the first layer is disposed between the copper current collector and the anode, and a lithiated polymer electrolyte membrane in contact with the anode. The battery cell may include a cathode in contact with the lithiated polymer electrolyte membrane and comprising a second lithiated polymer binder configured to conduct lithium ions, a second layer in contact with the cathode, the second layer comprising polyvinylidene fluoride, and an aluminum current collector disposed adjacent to the second layer, wherein the aluminum current collector is a positive current collector.
US11316137B2
A flexible display panel, a method for fabricating the same, and a display device are provided. A protruding structure located is formed in a via-hole area on a flexible base substrate so that both the protruding structure, and the portions of an organic light-emitting functional film and a top electrode layer covering the protruding structure can be removed. Thereafter an encapsulation thin film covering the patterns of the organic light-emitting functional film and the top electrode layer is formed. After the encapsulation thin film is formed, the step of removing the pattern of the encapsulation thin film in the via-hole area can be further performed to expose the flexible base substrate in the via-hole area, and after the flexible base substrate in the via-hole area is removed, a via-hole can be formed in the flexible base substrate.
US11316133B2
An organic light-emitting display apparatus includes a substrate, an inorganic insulation film on the substrate, an organic insulation film on the inorganic insulation film, an organic light-emitting device on the organic insulation film, and an encapsulation unit including a first inorganic film covering the organic light-emitting device and having a first boundary portion contacting the organic insulation film, an organic film covering the first inorganic film and having a second boundary portion contacting the inorganic insulation film, and a second inorganic film covering the organic film and having a third boundary portion contacting the substrate.
US11316132B2
A display panel and a manufacturing method thereof are provided. The display panel includes a substrate, a thin film transistor (TFT) device layer, a luminescent device layer, and a thin film encapsulation layer, wherein the thin film encapsulation layer includes a first inorganic layer, a first hardening layer disposed on the first inorganic layer, a second inorganic layer disposed on the first hardening layer, an organic planarization layer disposed on the second inorganic layer, a second hardening layer disposed on the organic planarization layer, a third inorganic layer disposed on the second hardening layer, and a third hardening layer disposed on the third inorganic layer, thereby realizing a cover window and encapsulation structure characteristics at the same time, and achieving ultra-thin encapsulation.
US11316124B2
An organic light-emitting device and a flat panel display device, the organic-light emitting device including an anode; a cathode; and an organic layer therebetween including an emission layer, a hole transport region between the anode and the emission layer, the hole transport region including at least one of a hole injection layer, a hole transport layer, and an electron blocking layer, an electron transport region between the emission layer and the cathode, the electron transport region including at least one of a hole blocking layer, an electron transport layer, and an electron injection layer, and a buffer layer between the emission layer and the electron transport region, wherein the buffer layer includes a biscarbazole-based derivative and triphenylene-based derivative, and a triplet energy (ET1) of the biscarbazole-based derivative or the triphenylene-based derivative and a triplet energy (ET2) of a dopant of the emission layer satisfy the following relationship: ET1>ET2.
US11316122B2
The present invention provides an OLED display panel and a manufacturing thereof, and an OLED device. The OLED display panel adopts organic host materials, organic light-emitting materials, and amorphous fluoropolymers to produce a light-emitting layer, so that amorphous polymers improve thermal stability and solvent resistance of the light-emitting layer, and the light-emitting layer is not damaged by solvents when an electron transport layer is formed by solvents, thereby resolving the process of processing OLED devices by solvents having damage to the light-emitting layer causing poor display performance in the prior art.
US11316119B2
Disclosed are a curved display apparatus and a method of manufacturing the same, which improve a luminance difference between a flat part and a curved part. The curved display apparatus having a flat part and a bending part extending from one side of the flat part, either of the flat part and the bending part defining a plurality of emission areas therein, wherein the curved display apparatus comprises: a light emitting device layer including a plurality of light emitting devices to form the emission areas, wherein a slope film is provided in the bending part such that an emission surface of the emission areas in the bending part is almost parallel to an emission surface of the emission areas in the flat part.
US11316112B2
The present invention provides with an electron-accepting compound having a structure of the following formula (1):
US11316107B2
Electrical contacts may be formed by forming dielectric liners along sidewalls of a dielectric structure, forming sacrificial liners over and transverse to the dielectric liners along sidewalls of a sacrificial structure, selectively removing portions of the dielectric liners at intersections of the dielectric liners and sacrificial liners to form pores, and at least partially filling the pores with a conductive material. Nano-scale pores may be formed by similar methods. Bottom electrodes may be formed and electrical contacts may be structurally and electrically coupled to the bottom electrodes to form memory devices. Nano-scale electrical contacts may have a rectangular cross-section of a first width and a second width, each width less than about 20 nm. Memory devices may include bottom electrodes, electrical contacts having a cross-sectional area less than about 150 nm2 over and electrically coupled to the bottom electrodes, and a cell material over the electrical contacts.
US11316103B2
A process flow for forming magnetic tunnel junction (MTJ) nanopillars with minimal sidewall residue and minimal sidewall damage is disclosed wherein a pattern is first formed in a hard mask that is an uppermost MTJ layer. Thereafter, the hard mask sidewall is etch transferred through the remaining MTJ layers including a reference layer, free layer, and tunnel barrier between the free layer and reference layer. The etch transfer may be completed in a single RIE step that features a physical component involving inert gas ions or plasma, and a chemical component comprised of ions or plasma generated from one or more of methanol, ethanol, ammonia, and CO. In other embodiments, a chemical treatment with one of the aforementioned chemicals, and a volatilization at 50° C. to 450° C. may follow an etch transfer through the MTJ stack with an ion beam etch or plasma etch involving inert gas ions.
US11316090B2
A thermoelectric generator has a heat conducting body that exchanges heat with the environment according to environmental temperature changes, a heat storing body, and a thermoelectric conversion unit and thermal resistance body arranged between the heat conducting body and the heat storing body. One end of the thermal resistance body and one end of the thermoelectric conversion unit are in contact with each other. The other end of the thermal resistance body is in contact with the heat conducting body, and the other end of the thermoelectric conversion unit is in contact with the heat storing body. The surface of the heat storing body is covered by a covering layer having certain heat insulation properties. The temperature difference generated between the heat conducting body and the heat storing body is utilized to extract electric energy from the thermoelectric conversion unit.
US11316087B2
A light emitting device includes a mount board that includes a wiring pattern on an upper surface, and light emitting elements that are mounted at corresponding one of mounting positions on the wiring pattern to be connected in series and/or in parallel to each other through the wiring pattern. The light emitting elements each include a pair of electrodes on a back surface side thereof. The mounting positions include four or more connection terminals that are electrically separated from each other to connect the electrodes of their corresponding light emitting element to each other. Series connection and parallel connection numbers are determined in accordance with orientations of the light emitting elements in which each electrode straddles at least adjacent two of the four or more connection terminals that are spaced away from and adjacent to each other.
US11316083B2
An embodiment of the present invention discloses a backlight module and a display device. The backlight module includes a circuit board. A side surface of the circuit board is provided with a plurality of light emitting elements spaced apart from each other. A light output surface of at least one of the light emitting elements is covered with a first encapsulation layer. A side surface of the first encapsulation layer away from the at least one light emitting elements is a curved surface.
US11316080B2
A light emitting device includes a light emitting element, a light guide member, a reflecting member, a wavelength conversion member. The light emitting element has a light emitting surface and lateral surfaces. The light guiding member is provided on at least a portion of the lateral surfaces of the light emitting element. The reflecting member is provided on the lateral surface of the light emitting element with the light guiding member interposed therebetween. The wavelength conversion member is provided on the light emitting surface of the light emitting element, the light guiding member and the reflecting member. The wavelength conversion member is provided with a recess between an outer lateral surface of the wavelength conversion member and the light guiding member. The reflecting member is provided in the recess.
US11316079B2
An emissive nanocrystal particle includes a core including a first semiconductor nanocrystal including a Group III-V compound and a shell including a second semiconductor nanocrystal surrounding the core, wherein the emissive nanocrystal particle includes a non-emissive Group I element.
US11316077B2
A radiation-emitting device includes a semiconductor layer sequence having an active layer that emits a primary radiation during operation, a decoupling surface on a surface of the semiconductor layer sequence, a wavelength conversion layer on a side of the semiconductor layer sequence facing away from the decoupling surface, containing at least one conversion material that converts the primary radiation into secondary radiation, and a mirror layer on the side of the wavelength conversion layer facing away from the semiconductor layer sequence, wherein the at least one conversion material is electrically conductive and/or embedded in an electrically conductive matrix material.
US11316074B2
A display device is disclosed, wherein the display device includes a light emitting unit, including: a first semiconductor layer; an active layer disposed on the first semiconductor layer; a second semiconductor layer disposed on the active layer; and a protecting layer disposed on the second semiconductor layer, wherein the protecting layer has a region in which oxygen atomic percentages decrease toward the second semiconductor layer.
US11316070B2
According to an aspect, an illumination device configured to be arranged opposing an image display surface of a reflective display device, includes: a translucent substrate; a plurality of light emitting elements that is provided to the translucent substrate; an anode electrode that is electrically coupled to the light emitting elements; and a cathode electrode that is electrically coupled to the light emitting elements. The anode electrode includes: a plurality of first partial anode electrodes having recessed structures in which the light emitting elements are arranged; and a second partial anode electrode that has a width less than widths of the first partial anode electrodes and couples the first partial anode electrodes.
US11316067B2
A semiconductor body is disclosed. In an embodiment a semiconductor body includes an n-doped region comprising a first layer sequence comprising pairs of alternating layers, wherein a first layer and a second layer of each pair differ in their doping concentration, and wherein the first and second layers of each pair have the same material composition except for their doping and a second layer sequence comprising pairs of alternating layers, wherein a first layer and a second layer of each pair differ in their material composition, an active region, wherein the second layer sequence is disposed between the first layer sequence and the active region and a p-doped region, wherein the active region is disposed between the n-doped region and the p-doped region.
US11316061B2
n-type amorphous semiconductor layers (4) and p-type amorphous semiconductor layers (5) are alternately disposed on the back surface of a semiconductor substrate (1) so as to be separated from each other at a desired interval paralleled with the direction of the surface of the semiconductor substrate (1). An electrode (6) is disposed on the n-type amorphous semiconductor layer (4), and an electrode (7) is disposed on the p-type amorphous semiconductor layer (5). A protective film (8) includes an insulating film, and is disposed on a passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7), so as to be in contact with the passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7).
US11316058B2
A stacked multi-junction solar cell with a metallization comprising a multilayer system, wherein the multi-junction solar cell has a germanium substrate forming a bottom side of the multi-junction solar cell, a germanium subcell, and at least two III-V subcells, the multilayer system of the metallization has a first layer, comprising gold and germanium, a second layer comprising titanium, a third layer, comprising palladium or nickel or platinum, with a layer thickness, and at least one metallic fourth layer, and the multilayer system of the metallization covers at least one first and second surface section and is integrally connected to the first and second surface section, wherein the first surface section is formed by the dielectric insulation layer and the second surface section is formed by the germanium substrate or by a III-V layer.
US11316048B2
Provided are a tin oxide layer, a thin film transistor (TFT) having the same as a channel layer, and a method for manufacturing the TFT. The TFT comprises a gate electrode, a tin oxide channel layer disposed on the gate electrode and being a polycrystalline thin film with preferred orientation in a [001] direction, a gate insulating film disposed between the gate electrode and the channel layer, and source and drain electrodes electrically connected to both ends of the channel layer, respectively.
US11316032B2
Provided is an integrated circuit including at least one cell, the at least one cell includes first and second active regions spaced apart from each other, a dummy region disposed between the first and second active regions, at least one first active fin disposed in the first active region and extending in a first direction, at least one second active fin extending along the first direction over the entire length of the second active region, and an active gate line extending in a second direction that is substantially perpendicular to the first direction, wherein the active gate line vertically overlaps the first active region and the dummy region and does not vertically overlap the second active region.
US11316030B2
A method includes forming a doped region on a top portion of a substrate, forming a first epitaxial layer over the substrate, forming a recess in the first epitaxial layer, the recess being aligned to the doped region, performing a surface clean treatment in the recess, the surface clean treatment includes: oxidizing surfaces of the recess to form an oxide layer in the recess, and removing the oxide layer from the surfaces of the recess, and forming a second epitaxial layer in the recess.
US11316028B2
Transistors are fabricated by forming a nitride-based semiconductor barrier layer on a nitride-based semiconductor channel layer and forming a protective layer on a gate region of the nitride-based semiconductor barrier layer. Patterned ohmic contact metal regions are formed on the barrier layer and annealed to provide first and second ohmic contacts. The annealing is carried out with the protective layer on the gate region. A gate contact is also formed on the gate region of the barrier layer. Transistors having protective layer in the gate region are also provided as are transistors having a barrier layer with a sheet resistance substantially the same as an as-grown sheet resistance of the barrier layer.
US11316018B2
A compound semiconductor substrate includes a SiC (silicon carbide) layer, a AlN (aluminum nitride) buffer layer formed on the SiC layer, an Al (aluminum) nitride semiconductor layer formed on the AlN buffer layer, a composite layer formed on the Al nitride semiconductor layer, a GaN (gallium nitride) layer as an electron transition layer formed on the composite layer, and an Al nitride semiconductor layer as a barrier layer formed on the GaN layer. The composite layer includes C—GaN layers stacked in a vertical direction, and an AlN layer formed between the C—GaN layers.
US11316016B2
A novel material is provided. A composite oxide semiconductor includes a first region and a second region. The first region contains indium. The second region contains an element M (the element M is one or more of Ga, Al, Hf, Y, and Sn). The first region and the second region are arranged in a mosaic pattern. The composite oxide semiconductor further includes a third region. The element M is gallium. The first region contains indium oxide or indium zinc oxide. The second region contains gallium oxide or gallium zinc oxide. The third region contains zinc oxide.
US11316009B2
An integrated electronic device includes a first terminal and a second terminal, a Schottky diode having a first threshold voltage and coupled between the first terminal and the second terminal, a derivation component having a second threshold voltage greater than the first threshold voltage and coupled between the first terminal and the second terminal. The derivation component comprises a super-junction.
US11316000B2
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate includes a base substrate; a first metal layer on the base substrate; a first insulating layer on the first metal layer; a second metal layer on the first insulating layer; and a second insulating layer located on the second metal layer. The array substrate includes a display region and a peripheral region surrounding the display region, the first metal layer includes a plurality of signal lines in the peripheral region, the second insulating layer includes at least one groove overlapping at least two signal lines, the second metal layer includes a metal strip in the peripheral region, and in the area where the groove overlaps the signal lines, an orthographical projection on the base substrate fall into the orthographic projection of the metal strip on the base substrate.
US11315985B2
The present disclosure provides a display panel and a method for manufacturing the same, and a display device. The display panel includes: a substrate; a pixel unit array disposed on one side of the substrate, wherein the pixel unit array comprises a plurality of pixel units, at least one of the plurality of pixel units comprising an anode layer, a cathode layer, and a light emitting layer located between the anode layer and the cathode layer, the cathode layer defining an opening configured to transmit a light emitted from the light emitting layer; and at least one sensor disposed on one side of the pixel unit array away from the substrate and configured to detect a light transmitted through the opening.
US11315982B2
A light emitting diode includes a pixel unit. The pixel unit may include a first sub-pixel configured to emit white light. The first sub-pixel may include a first microcavity adjustment layer, a scattering layer, a first transparent electrode layer, a first emitting layer, and a first semi-transparent electrode layer. The scattering layer includes a plurality of patterns formed on a surface of the scattering layer. The scattering layer may be configured to reduce color cast of the first sub-pixel to be less than about 0.025 at viewing angles in a range of about −50 degree to +50 degree.
US11315978B2
An image sensor includes a substrate having a first surface and a second surface opposite to each other, a first floating diffusion region provided in the substrate and being adjacent to the first surface, a through-electrode provided in the substrate and electrically connected to the first floating diffusion region, an insulating structure, a bottom electrode, a photoelectric conversion layer, and a top electrode sequentially stacked on the second surface, a color filter buried in the insulating structure, and a top contact plug penetrating the insulating structure to connect the bottom electrode to the through-electrode.
US11315961B2
(Object) To miniaturize a field-effect transistor. (Means of Achieving the Object) A field-effect transistor includes a semiconductor film formed on a base, a gate insulating film formed on a part of the semiconductor film, a gate electrode formed on the gate insulating film, and a source electrode and a drain electrode formed in contact with the semiconductor film, wherein a thickness of the source electrode and the drain electrode is smaller than a thickness of the gate insulating film, and the gate insulating film includes a region that is not in contact with the source electrode or the drain electrode.
US11315960B2
A thin film transistor structure and a manufacturing method thereof, a circuit structure, a display substrate and a display device are provided. The thin film transistor structure includes: a base plate, and a first thin film transistor and a second thin film transistor stacked on the base plate. The first thin film transistor and the second thin film transistor share a same active layer.
US11315957B2
A light emitting display apparatus is disclosed. The light emitting display apparatus includes: a substrate; and a plurality of pixels disposed on a pixel area on the substrate. Each of the plurality of pixels includes: a first circuit layer including a first pixel circuit including a driving transistor; a second circuit layer overlapping the first circuit layer, wherein the second circuit layer includes a second pixel circuit including a data supply transistor configured to supply a data signal to the first pixel circuit; a circuit insulating layer between the first circuit layer and the second circuit layer; and a light emitting diode layer including a light emitting diode electrically connected with the first pixel circuit.
US11315955B2
A thin film transistor substrate, a display device, a method of manufacturing a thin film transistor substrate, and a method of manufacturing a display device, the thin film transistor substrate including a substrate; a first thin film transistor on the substrate, the first thin film transistor including a first active pattern, and a first gate electrode arranged to overlap at least a part of the first active pattern; and a second thin film transistor on the substrate, the second thin film transistor including a second active pattern that includes a plurality of protrusions on an upper surface thereof, and a second gate electrode arranged to overlap at least a part of the second active pattern.
US11315950B2
A semiconductor memory device includes a conducting layer and an insulating layer that are disposed above a semiconductor substrate, a plurality of pillars that extend in a direction which crosses a surface of the semiconductor substrate, and a plate that is disposed between the plurality of pillars and extends in the same direction as the pillars. A surface of the plate, which faces the pillars, has convex portions and non-convex portions.
US11315949B2
Disclosed are a semiconductor structure, which includes a charge-trapping sidewall spacer-type non-volatile memory (CTSS-NVM) device, and a method of forming the structure. The CTSS-NVM device includes asymmetric first and second sidewall spacers on opposing sidewalls of a gate structure above a channel region in a semiconductor substrate. The second sidewall spacer is wider than the first and includes multiple dielectric spacer layers, one of which is made of a charge-trapping material, is separated from the substrate (e.g., by a thin oxide layer), and has a bottom end closest to the substrate with a maximum width that is sufficient to achieve charge-trapping for proper CTSS-NVM device operation. The CTSS-NVM device further includes an epitaxial semiconductor layer for a source/drain region on the semiconductor substrate adjacent to the first sidewall spacer and a metal silicide layer for a Schottky barrier on the semiconductor substrate adjacent to the second sidewall spacer.
US11315932B2
A method for forming a memory structure includes: providing a substrate including a memory array region and a peripheral circuit region; forming a plurality of bit line structures in the memory array region; forming a dielectric layer in the peripheral circuit region; forming a plurality of contacts between the bit line structures; depositing a protective layer on the substrate; depositing a hard mask layer on the protective layer; etching back the hard mask layer to form a hard mask spacer on the first top surface of the protective layer and immediately adjacent to the peripheral circuit region; and etching the protective layer with the hard mask spacer as an etching mask to leave a protective feature at the boundary between the memory array region and the peripheral circuit region.
US11315928B2
The present disclosure provides a semiconductor structure. The semiconductor structure comprises a substrate having a first top surface. An active region is surrounded by an isolation region in the substrate. A buried power line and a buried signal line are disposed within the substrate and in the active region. A first circuit layer is disposed on the first top surface of the substrate to cover the buried power line and the buried signal line. A second circuit layer is disposed on the first top surface of the substrate and separated from the first circuit layer. A cell capacitor is disposed on and electrically coupled to the first circuit layer.
US11315920B2
An array substrate includes a base substrate, at least one first signal line and at least one second signal line disposed at a first side of the base substrate, and at least one electrostatic discharge (ESD) protection device disposed at the first side of the base substrate. Each ESD protection device includes a first electrode coupled to one first signal line, a second electrode coupled to one second signal line, and an insulating medium disposed between the first electrode and the second electrode. An orthographic projection of the first electrode on the base substrate at least partially overlaps with an orthographic projection of the second electrode on the base substrate, and the ESD protection device is configured to discharge electrostatic charges on one of the first signal line and the second signal line that are coupled to the ESD protection device to the other one.
US11315914B2
A semiconductor memory device includes: a first pad layer in a surface of a memory chip including a cell region in which a memory cell array coupled to a plurality of row lines and a step region including staggered step portions of the plurality of row lines, and including a plurality of first pads that are coupled to the step portions; a second pad layer in a surface of a circuit chip bonded to the surface of the memory chip, and having a plurality of second pads coupled to a plurality of pass transistors defined in the circuit chip; a first redistribution line disposed in the first pad layer that couples one of the step portions and one of the pass transistors; and a second redistribution line disposed in the second pad layer that couples another one of the step portions and another one of the pass transistors.
US11315913B2
A light emitting device includes: a base comprising a first lead, a second lead, and a supporting member; a light emitting element mounted on the first lead; a protection element mounted on the second lead; a wire including a first end and a second end, wherein the first end is connected to an upper surface of the first lead, and the second end is connected to a first terminal electrode of the protection element; a resin frame located on an upper surface of the base, wherein the resin frame covers at least part of the protection element and surrounds the light emitting element and the first end of the wire; a first resin member surrounded by the resin frame and covering the light emitting element and the first end of the wire; and a second resin member covering the resin frame and the first resin member.
US11315910B2
A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume. If the number of harvested microLED devices in the suspension is known, a calculation can be made of the number of microLED devices per unit of suspension volume.
US11315894B2
A semiconductor stack and a method for manufacturing the same are disclosed. The semiconductor stack includes a lower chip, an upper chip disposed over the lower chip, an upper lateral-side passivation layer surrounding side surfaces of the upper chip, and a plurality of bonding pads and a bonding passivation layer disposed between the upper chip and the lower chip.
US11315892B2
A power semiconductor device, a power semiconductor module and a power semiconductor device processing method are provided. The power semiconductor device includes a first load terminal structure, a second load terminal structure, and a semiconductor structure electrically coupled to each load terminal structure and configured to carry a load current. The first load terminal structure includes a conductive layer in contact with the semiconductor structure, a bonding block configured to be contacted by at least one bond wire and to receive at least a part of the load current from the at least one bond wire and/or the conductive layer, a support block having a hardness greater than the hardness of the conductive layer and the bonding block. The bonding block is mounted on the conductive layer via the support block, and a zone is arranged within the conductive layer and/or the bonding block, the zone exhibiting nitrogen atoms.
US11315887B2
The present disclosure provides a semiconductor structure and a method of manufacturing the semiconductor structure. The semiconductor structure includes a substrate defined with a peripheral region and an array area at least partially surrounded by the peripheral region, wherein the substrate includes a plurality of fins protruding from the substrate and disposed in the array area, and a first elongated member protruding from the substrate and at least partially surrounding the plurality of fins; an insulating layer disposed over the plurality of fins and the first elongated member; a capping layer disposed over the insulating layer; and an isolation surrounding the plurality of fins, the first elongated member, the insulating layer and the capping layer.
US11315865B2
A method of manufacturing circuit board structure includes forming a sacrificial layer having first openings on a substrate; forming a metal layer on the sacrificial layer; forming a patterned photoresist layer having second openings over the sacrificial layer, in which the second openings are connected to the first openings and expose a portion of the metal layer; forming a first circuit layer filling the second openings and the first openings; forming a first dielectric layer over the sacrificial layer and covering the metal layer, in which the first dielectric layer has third openings exposing the first circuit layer; forming a second circuit layer filling the third openings and covering a portion of the first dielectric layer; removing the substrate to expose the sacrificial layer, a portion of the metal layer and a portion of the first circuit layer; and removing the sacrificial layer and the metal layer.
US11315860B2
A package manufacturing process and semiconductor packages are provided. An interposer having a crystal structure is provided. A first die and a second die are bonded on the interposer. The second die is positioned to be spaced apart from the first die with a gap extending direction that is perpendicular to a shortest distance of the gap, and the gap extending direction is not parallel with a crystallographic orientation of the crystal structure of the interposer. A molding compound is formed over the interposer covering the first and second dies. The molding compound and the interposer are cut into packages.
US11315848B2
A semiconductor device, includes: a semiconductor element including an element main surface and an element back surface facing opposite sides in a thickness direction; a wiring part electrically connected to the semiconductor element; an electrode pad electrically connected to the wiring part; a sealing resin configured to cover a part of the semiconductor element; and a first metal layer configured to make contact with the element back surface and exposed from the sealing resin, wherein the semiconductor element overlaps the first metal layer when viewed in the thickness direction.
US11315843B2
Various embodiments disclosed relate to a substrate for a semiconductor device. The substrate includes a first major surface and a second major surface opposite the first major surface. The substrate further includes a cavity defined by a portion of the first major surface. The cavity includes a bottom dielectric surface and a plurality of sidewalls extending from the bottom surface to the first major surface. A first portion of a first sidewall includes a conductive material.
US11315840B2
An assembly for monitoring a semiconductor device under test comprising a mill configured to mill the device, a sensor configured to measure an electrical characteristic of the device, and a computer configured to determine the amount of strain in the device from the electrical characteristic when the mill is milling the device and detect an endpoint of milling at a circuit within the device. In use the endpoints of the milling process of the semiconductor device are detected measuring an electrical characteristic of the device with a sensor during milling determining the amount of strain in the device from the electrical characteristic and detecting an endpoint of the milling process within the device based on the amount of strain.
US11315835B2
One illustrative method disclosed herein includes forming a conformal SMCM layer above a conformal high-k gate insulation layer within each of first and second replacement gate cavities (RGC), removing the SMCM layer from the first RGC while leaving the SMCM layer in position within the second RGC, forming a first conformal metal-containing material (MCM) layer above the gate insulation layer within the first RGC and above the SMCM layer in position within the second RGC, removing the first conformal MCM layer and the conformal SMCM layer positioned within the second RGC while leaving the first conformal MCM layer within the first RGC, and forming a second conformal MCM layer above the first conformal MCM layer positioned within the first RGC and above the gate insulation layer positioned within the second RGC.
US11315833B2
A wafer processing method includes a sheet bonding step of placing a polyolefin or polyester sheet on a front side of a wafer having a device area where devices are formed so as to be separated by division lines, the sheet having a size capable of covering the device area, and next performing thermocompression bonding to bond the sheet to the front side of the wafer, thereby protecting the front side of the wafer with the sheet. The method further includes a test element group (TEG) cutting step of applying a first laser beam through the sheet to the wafer along each division line thereby cutting a TEG formed on each division line, and a modified layer forming step of applying a second laser beam to a back side of the wafer along each division line, the second laser beam having a transmission wavelength to the wafer, thereby forming a modified layer inside the wafer along each division line.
US11315829B2
A method includes depositing an etch stop layer over a first conductive feature, performing a first treatment to amorphize the etch stop layer, depositing a dielectric layer over the etch stop layer, etching the dielectric layer to form an opening, etching-through the etch stop layer to extend the opening into the etch stop layer, and filling the opening with a conductive material to form a second conductive feature.
US11315827B2
A method for fabricating a semiconductor device including a skip via connection between metallization levels includes subtractively etching first conductive material to form a first via and a skip via on a first conductive line. The first via and the first conductive line are included within a first metallization level. The skip via is used to connect the first metallization level to a third metallization level above a second metallization level. The method further includes forming, on the first via from second conductive material, a second via disposed on a second conductive line. The second via and the second conductive line are included within the second metallization level.
US11315824B2
A method for manufacturing a trench isolation structure comprising forming a shallow trench having a wider upper section and a narrower lower section in a wafer surface, removing part of the silicon oxide by etching, forming a silicon oxide corner structure at a corner at a top corner of the shallow trench by thermal oxidation, depositing silicon nitride on the wafer surface to cover surfaces of the shallow trench silicon oxide and the silicon oxide corner structure, dry etching the silicon nitride on the shallow trench silicon oxide surface thereby forming masking silicon nitride residues extending into the trench, etching downwards to form a deep trench, forming silicon oxide layers on a side wall and the bottom of the deep trench, depositing polycrystalline silicon in the shallow and deep trenches, removing the silicon nitride, and forming silicon oxide in the shallow trench to cover the polycrystalline silicon.
US11315822B2
A porous chuck table for holding a plate-like workpiece under suction includes a porous plate having a porous structure, the porous plate having a holding surface for holding the workpiece under suction thereon, and a frame surrounding the porous plate and having a face side lying flush with the holding surface. The porous plate is at least made of spherical glass particles, adjacent ones of the glass particles are partly joined together, and interstices between adjacent ones of the partly joined glass particles function as pores through which a fluid can flow.
US11315819B2
A method may include providing a substrate on a clamp, and directing radiation from an illumination source to the substrate when the substrate is disposed on the clamp during substrate processing, wherein the radiation is characterized by a radiation energy, wherein at least a portion of the radiation energy is equal to or greater than 2.5 eV.
US11315814B2
The present disclosure provides a carrying apparatus and a carrying method, the carrying apparatus includes: a carrying part configured to carry an object to be carried; an adhesive assembly disposed on the carrying part, a viscosity of the adhesive assembly is variable, and the carrying apparatus is configured to selectively adhere to or separate from the object to be carried according to a change of the viscosity; and a supporting part disposed on the carrying part and configured to support the object to be carried so that the object to be carried separates from the carrying part.
US11315802B2
A method of manufacturing a semiconductor package includes forming a plurality of trenches at a first surface of a silicon substrate, forming a conductive pad inside each of the plurality of trenches, forming a redistribution layer on the first surface of the silicon substrate, forming an external connection terminal on a first surface of the redistribution layer, removing the silicon substrate to expose each conductive pad, mounting a semiconductor chip to be connected to the conductive pads, and forming an encapsulant to cover at least one surface of the semiconductor chip.
US11315793B2
An etching method is performed in a state where a substrate is placed on a substrate support provided in a chamber of a plasma processing apparatus. In the etching method, radio-frequency power is supplied to generate plasma from a gas in the chamber. Subsequently, a negative DC voltage is applied to a lower electrode of the substrate support during the supplying of the radio-frequency power to etch the substrate with positive ions from plasma. Subsequently, the applying of the negative DC voltage to the lower electrode and the supplying of the radio-frequency power are stopped to generate negative ions. Subsequently, a positive DC voltage is applied to the lower electrode in a state where the supply of the radio-frequency power is stopped to supply the negative ions to the substrate.
US11315789B2
Described herein is a method of bonding and/or debonding substrates. In one embodiment, at least one of the surfaces of the substrates to be bonded is comprised of an oxide. In one embodiment, the surfaces of both substrates comprise an oxide. A wet etch may then be utilized to debond the substrates by etching away the layers that have been bonded. In one embodiment, a fusion bonding process is utilized to bond two substrates, at least one substrate having a silicon oxide surface. In one exemplary etch, a dilute hydrofluoric (DHF) etch is utilized to etch the bonded silicon oxide surface, allowing for two bonded substrates to be debonded. In another embodiment, the silicon oxide may be a low density silicon oxide. In one embodiment, both substrates may have a surface layer of the low density silicon oxide which may be fusion bonded together.
US11315777B2
The invention provides a method and apparatus subjecting an analyte in an ion concentrating chamber to an electric and velocity field to concentrate analyte ions into a smaller space.
US11315776B2
An analysis system includes a degassing cell, at least one first valve, and at least one second valve. The at least one first valve is fluidly coupled with a top of the degassing cell, the at least one first valve configured selectably connect the degassing cell to a displacement gas flow and to a vacuum source. The at least one second valve is fluidly connected with a lateral side of the degassing cell and separately fluidly connected with a bottom of the degassing cell. The at least one second valve is selectably coupled with any of a source of a sample-carrying fluid, a transfer line configured to deliver a sample to an analysis device, or a waste output.
US11315775B2
An example system includes an ion detector and a signal processing apparatus in communication with the ion detector. The ion detector is arranged to detect ions during operation of the system and to generate a signal pulse in response to the detection of an ion. The signal pulse has a peak amplitude related to at least one operational parameter of the system. The signal processing apparatus is configured to analyze signal pulses from the ion detector and determine information about the detected ions during operation of the system based on the signal pulses. The signal processing apparatus includes a discriminator circuit. The signal processing apparatus is programmed to vary a threshold of the discriminator circuit based on the at least one operational parameter of the system during operation of the system.
US11315768B2
The present disclosure provides a loading apparatus and a physical vapor deposition (PVD) apparatus. The loading apparatus includes a pedestal configured to support a workpiece; and a first support member placed on the pedestal and configured to push up a cover ring when the pedestal is at an operation position to prevent an overlapping portion of a cover ring and the workpiece from contacting each other. In the loading apparatus and the PVD apparatus, the first support member supports the cover ring, such that the cover ring does not contact the workpiece, thereby reducing stress forces on the workpiece by external components.
US11315766B2
In a plasma processing apparatus, a mounting table have a first mounting surface on which a target object or a jig is mounted and a second mounting surface on which a ring member is mounted. The jig is used for measuring a thickness of the ring member disposed around the target object and having a facing portion facing an upper surface of the ring member. Elevating mechanisms lift or lower the ring member with respect to the second mounting surface. An acquisition unit acquires gap information indicating a gap dimension between the second mounting surface and the facing portion of the jig. A measurement unit measures a lifted distance of the ring member from the second mounting surface. A thickness calculation unit calculates the thickness of the ring member based on the gap dimension and the measured lifted distance of the ring member.
US11315765B2
Disclosed is a plasma processing apparatus including a processing chamber configured to perform a processing on a wafer by plasma, a VF power supply configured to change a frequency of a high frequency power to be supplied into the chamber, a susceptor configured to mount the wafer thereon, and a focus ring disposed to surround the wafer. A first route, which passes through the plasma starting from the VF power supply, passes through the susceptor, the wafer and the plasma, and a second route, which passes through the plasma starting from the VF power supply, passes through the susceptor, the focus ring and the plasma. The reflection minimum frequency of the first route is different from the reflection minimum frequency of the second route, and the frequency range changeable by the VF power supply includes the reflection minimum frequencies of the first and second routes.
US11315756B2
A method for analyzing a sample with a charged particle beam including directing the beam toward the sample surface; milling the surface to expose a second surface in the sample in which the end of the second surface distal to ion source is milled to a greater depth relative to a reference depth than the end of the first surface proximal to ion source; directing the charged particle beam toward the second surface to form one or more images of the second surface; forming images of the cross sections of the multiple adjacent features of interest by detecting the interaction of the electron beam with the second surface; assembling the images of the cross section into a three-dimensional model of one or more of the features of interest. A method for forming an improved fiducial and determining the depth of an exposed feature in a nanoscale three-dimensional structure is presented.
US11315754B2
A method of evaluating a region of a sample that includes alternating layers of different material. The method includes milling, with a focused ion beam, a portion of the sample that includes the alternating layers of different material; reducing the milling area; and repeating the milling and reducing steps multiple times during the delayering process until the process is complete.
US11315742B2
A sticker-type electronic device which is freely detachably attachable to various bodies repeatedly is provided. The electronic device includes a main substrate which exhibits a surface adhesion property due to the properties of a material thereof and which provides an attachment/detachment surface to an article, and an electrode formed by being transferred from a temporary substrate to a surface that is opposite to the attachment/detachment surface of the main substrate to the article wherein the electrode is transferred directly to the main substrate using the adhesion property of the main substrate. The electronic device is freely detachably attachable to the surface of the article repeatedly using the surface adhesion property of the main substrate. The electronic device is formed directly on the surface of the substrate constituted by the material having the surface adhesion property, thereby providing a sticker-type electronic device which is freely repeatedly detachably attachable to various bodies.
US11315740B2
A solid electrolytic capacitor comprising a capacitor element is provided. The capacitor element comprises a sintered porous anode body; a dielectric that overlies the anode body; and a solid electrolyte that overlies the dielectric and that includes a conductive polymer and a depolarizer.
US11315732B2
A multilayer ceramic electronic component includes a ceramic body, and first and second external electrodes disposed on the surface of the ceramic body, respectively. The ceramic body includes a capacitance forming portion including a dielectric layer and internal electrodes, margin portions disposed on both sides of the capacitance forming portion, and cover portions disposed on both sides of the capacitance forming portion. The first and second external electrodes include first and second base electrodes, respectively, first and second conductive layers disposed on edges of the first and second base electrodes, respectively, and first and second terminal electrodes covering the first and second base electrodes, respectively.
US11315730B2
A multilayer electronic component having an electrode facing portion in which a plurality of internal electrode layers face one another with a dielectric layer interposed therebetween. Each dielectric layer includes Ba, Ti, Si, Re, and M. M is at least one element selected from Mn, Ni, Co, Fe, Cr, Cu, Mg, Li, Al, Mo, W, and V. When the Ti is represented in an amount of 100 parts by mole the dielectric layer at the electrode facing portion has Si in an amount a of 0.01≤a≤0.1, Re in an amount b of 0.1≤b≤3.0, and M in an amount c of 0.2≤c≤5.0. A ratio m of the amount of Ba to the amount of Ti is 0.965≤m≤0.990.
US11315728B2
A method of increasing coercivity of a sintered Nd—Fe—B permanent magnet includes a first step of providing a sintered Nd—Fe—B magnet block having a pair of block surfaces extending perpendicular to a magnetization direction. The method then proceeds with depositing an organic adhesive layer on one of the block surfaces. Next, the method proceeds with depositing a powder containing at least one heavy rare earth element on the organic adhesive layer. After depositing the powder, the sintered Nd—Fe—B magnet block is pressed to adhere the powder to the organic adhesive layer. Then, the method follows with a step of removing excess powder from the sintered Nd—Fe—B magnet block to form a uniform film. Then, the powder is diffused into the sintered Nd—Fe—B magnet is diffused into the sintered Nd—Fe—B magnet block to produce a diffused magnet block. Next, the method proceeds with aging the diffused magnet block.
US11315725B2
The present disclosure relates to an electrostatic shield for providing electrostatic shielding for a current sensing coil. Current sensing coils are configured to enable the measurement of a current carried by an electrical conductor passing through a core of the current sensing coil. The electrostatic shield of the present disclosure is configured to provide electrostatic shielding to a core of the current sensing coil in order to reduce or eliminate electrostatic coupling between the electrical conductor and the current sensing coil, thereby improving the accuracy of current measurement that may be achieved by the current sensing coil.
US11315698B2
The invention relates to a smoothing tool (3) configured for smoothing glass frit in a radioactive environment, in an induction-melting cold crucible. Smoothing tool (3) comprising a rod (30), a grid (50) configured to be in contact with glass frit (7) to be smoothed, and at least one vibrator (37, 55, 56) configured to make the grid (50) vibrate. The grid (50) is mechanically connected to the rod (30).
US11315696B2
A sealing bolt for sealing a container (e.g. for fissile materials), the sealing bolt adapted to cooperate, in use, with a locking device for locking a container lid to a container body of the container. The sealing bolt includes an upper part (i.e. adapted to be manipulated by an operator using a tool), a lower part (cooperating with the locking device 46) and an axial rod connecting the upper and lower parts, the upper part, lower part and axial rod being arranged coaxially about an axis. An integrity element is disposed in the upper part and a release arrangement (a detachable conical end-piece 24 retained by a ball 34 and recess 32 arrangement) is disposed so as to be releasably attached to the lower part. The sealing bolt is movable, through a first operator actuation of the upper part, from a first state, in which the integrity element is intact, to a second state, in which the integrity element of the sealing bolt is visibly broken. The sealing bolt is movable, through a second operator actuation of the upper part, from the second state to a third state, in which the release arrangement is released, thereby enabling disengagement of the locking device and removal of the lid from the container body. A locking system for a container, a method of releasably sealing a container, and a method of unsealing a container, are also disclosed.
US11315691B2
Methods and systems for providing health professionals with continued education are based on performance gaps identified from patient data available in transactional systems of record. The methods can include creating a repository of educational material, measuring patient and team level performance gaps, associating the identified performance gaps with appropriate educational material, alerting the person about the appropriate educational material, capturing a user's interaction with the educational materials, and issuing credits or rewards for substantial consumption of the educational materials.
US11315682B2
Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
US11315681B2
Embodiments of a negative pressure wound therapy systems and methods for operating the systems are disclosed. In some embodiments, a system includes a pump assembly, canister, and a wound dressing configured to be positioned over a wound. The pump assembly, canister, and the wound dressing can be fluidically connected to facilitate delivery of negative pressure to a wound. The pump assembly can be configured to communicate data to a remote computer. The data can include location information, usage information, therapy information, and the like. Remote management and tracking of the pump assembly can be performed.
US11315677B2
The present application discloses a detection model training method and apparatus. The method includes determining an initial training model; determining a training sample; determining whether a lesion target is present in a first user body organ image through the initial detection model according to a feature of the each first user body organ image, to obtain a detection result; and determining a domain that each user body organ image in the training sample belongs to through the adaptive model according to a feature of the each user body organ image, to obtain a domain classification result; calculating, a loss function value related to the initial training model according to the detection result, the domain classification result, a first identifier, a second identifier, and a third identifier; and adjusting a parameter value in the initial training model according to the loss function value, to obtain a final detection model.
US11315670B2
The present invention relates to a method and to a monitoring device for monitoring operation of a drug delivery device, the monitoring device comprising of at least a first and a second sensor arranged at a distance from each other with regard to a first direction and being adapted to generate a first and a second electrical signal in response to an operation of the device, a processing unit configured to determine a time delay between the first and the second electrical signals and being adapted to determine at least one state parameter of the drug delivery device on the basis of said time delay.
US11315661B2
Aspects of the present disclosure include systems for use in preparing an epitope tagged biomolecule reagent. A reagent preparatory apparatus for preparing the epitope tagged biomolecule reagent from an activated biomolecule and activated epitope tag is also described. Methods for communicating and receiving an epitope tagged biomolecule reagent request and preparing the subject epitope tagged biomolecule reagents are also provided.
US11315653B2
The present disclosure provides a dynamic random access memory (DRAM) and method for controlling the DRAM. The DRAM has a first operation mode and a second operation mode. The DRAM includes a control module and a connecting module. The connecting module includes an input/output (I/O) pad and a determining circuit. The I/O pad is configured to receive a first input signal. The determining circuit includes a detector and a first determining unit. The detector is configured to compare the first input signal to a reference signal so as to generate a first signal. The first determining unit is configured to receive the first signal and generate a first output signal according to the first signal. The control module is configured to control the DRAM being operated under the first operation mode or the second operation mode according to the first output signal.
US11315650B2
A memory system is provided to include a memory device and a memory controller configured to control the memory device. The memory device includes a first data latch storing information about a state of the memory cell and is configured to: execute a first verification operation and a second verification operation on the memory cell in response to receiving, from the memory controller, a suspend command to suspend a program operation being performed on the memory cell; store, in the first data latch, a temporary value obtained based on a result value of the first verification operation and a result value of the second verification operation; and execute, a resumption command to resume the program operation, a third verification operation, and restore the result value of the first verification operation and the result value of the second verification operation.
US11315639B2
A memory device includes a cell wafer including a memory cell array; a first logic wafer bonded to one surface of the cell wafer, and including a first logic circuit which controls the memory cell array; and a second logic wafer bonded to the other surface of the cell wafer which faces away from the one surface, and including a second logic circuit which controls the memory cell array.
US11315629B2
The present application provides a dual-port SRAM cell and a layout structure thereof, comprises a first and a second NMOS transistors, a first and a second PMOS transistors; the gates of the first and second NMOS transistors and the drains of the first and second PMOS transistors are connected to a word line; the source of the first NMOS transistor is connected to a first bit line; the source of the first PMOS transistor is connected to a second bit line; the source of the second NMOS transistor is connected to a third bit line; the source of the second PMOS transistor is connected to a fourth bit line; the drain of the first NMOS transistor and the gate of the first PMOS transistor are connected to a common input node of a latch.
US11315626B2
Examples of the present disclosure provide apparatuses and methods related to performing a sort operation in a memory. An example apparatus might include a a first group of memory cells coupled to a first sense line, a second group of memory cells coupled to a second sense line, and a controller configured to control sensing circuitry to sort a first element stored in the first group of memory cells and a second element stored in the second group of memory cells by performing an operation without transferring data via an input/output (I/O) line.
US11315609B2
A read path for a memory is provided that includes an integrated sense mixing and redundancy shift stage coupled between a sense amplifier and a data latch. The data latch is integrated with a level shifter.
US11315608B2
A semiconductor device may include a sudden power detection circuit and an operation circuit. The sudden power detection circuit may generate a power-off control signal in a sudden power-off state. The operation circuit may discharge a specific node based on the power-off control signal.
US11315607B2
An information processing apparatus includes a receiving unit that receives, during or after reproduction of a video, a predetermined operation with respect to the video, an associating unit that associates the received operation with a reproduction location where the received operation has been generated in the video, and a setting unit that sets in response to the received operation an importance degree of the reproduction location associated with the received operation.
US11315600B2
Metadata about a movie is retrieved. The metadata includes a plurality of associated viewer responses from at least one previous audience viewing of the video. The plurality of associated viewer responses from the at least one previous audience viewing are associated with one or more segments of the video. A segment of the video associated with a type of viewer reaction based on emotion and sentiment recognition is identified. Additional media content based on the identified video segment is retrieved. A segment of the additional media content that exceeds a threshold of similarity with the segment of the video is determined. A video clip that includes the segment of the additional media content is created.
US11315599B2
An information processing device including a mode control unit that determines a replay mode from replay mode candidates including a user dependent mode where output and replay are performed dependently on a user's action and a user independent mode where output and replay are performed independently of the user's action, and a output control unit that controls output and replay of an image, based on the replay mode.
US11315597B1
A plasmon generator (PG) is formed between a waveguide and main pole, and has a front portion (Au/Rh bilayer) wherein the upper Rh layer has a peg shape at an air bearing surface (ABS), and a tapered backside that is separated from a PG back portion by a dielectric spacer. The lower Au layer has a front side recessed from the ABS and curved sides self-aligned with the Rh layer sides. A key feature is that the back section of lower Au layer curved side forms a smaller angle with a plane aligned orthogonal to the ABS than a front section thereof thereby selectively enabling a deformation of the back end of the Au layer during a heat treatment to >300° C. at the wafer level. Accordingly, the front end of the lower Au layer is densified and provides an improved heat sink to improve reliability and area density capability (ADC).
US11315590B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for voice and graphical user interfaces. One of the methods includes receiving an audio input, analyzing the audio input to determine a requested task, determining response data in response to the requested task, determining at least a first part of the response data to be presented as an audio output and at least a second part of the response data to be presented as a visual output, forwarding the first part of the response data to an audio output for presentation to a user, forwarding the second part of the response data to a visual output for presentation to a user; and forwarding to at least one of the audio output and the visual output data describing sources and/or assumptions used to construct the response data.
US11315588B2
A reference acoustic input is processed into a quantization representation such that the quantization representation comprises acoustic components determined from the reference acoustic input, wherein the acoustic components comprise amplitude, rhythm, and pitch frequency of the reference acoustic input. A visual representation is generated that simultaneously depicts the acoustic components comprising amplitude, rhythm, and pitch frequency of the reference acoustic input. A user spoken input may be received and similarly processed and displayed.
US11315584B2
The present disclosure relates to an apparatus for decoding an encoded Unified Audio and Speech stream. The apparatus comprises a core decoder for decoding the encoded Unified Audio and Speech stream. The core decoder includes an eSBR unit for extending a bandwidth of an input signal, the eSBR unit including a QMF based harmonic transposer. The QMF based harmonic transposer is configured to process the input signal in the QMF domain, in each of a plurality of synthesis subbands, to extend the bandwidth of the input signal. The QMF based harmonic transposer is configured to operate at least in part based on pre-computed information. The present disclosure further relates to corresponding methods and storage media.
US11315583B2
An audio decoder for providing a decoded audio information on the basis of an encoded audio information is configured to obtain decoded spectral values on the basis of an encoded information representing the spectral values. The audio decoder is configured to jointly decode two or more most significant bits per spectral value on the basis of respective symbol codes for a set of spectral values using an arithmetic decoding, wherein a respective symbol code represents two or more most significant bits per spectral value for one or more spectral values. The audio decoder is configured to decode one or more least significant bits associated with one or more of the spectral values in dependence on how much least significant bit information is available, such that one or more least significant bits associated with one or more of the spectral values are decoded.
US11315578B2
Some disclosed methods involve encoding or decoding directional audio data. Some encoding methods may involve receiving a mono audio signal corresponding to an audio object and a representation of a radiation pattern corresponding to the audio object. The radiation pattern may include sound levels corresponding to plurality of sample times, a plurality of frequency bands and a plurality of directions. The methods may involve encoding the mono audio signal and encoding the source radiation pattern to determine radiation pattern metadata. Encoding the radiation pattern may involve determining a spherical harmonic transform of the representation of the radiation pattern and compressing the spherical harmonic transform to obtain encoded radiation pattern metadata.
US11315572B2
A speech recognition device includes: an obtaining unit which obtains a speech uttered in a conversation between a first speaker and a second speaker; a storage which stores the speech obtained; an input unit which receives operation input; an utterance start detector which, when the input unit receives the operation input, detects a start position of the speech; and a speaker identification unit which identifies a speaker of the speech as the first speaker who has performed the operation input or the second speaker who has not performed the operation input, based on (i) first timing at which the input unit has received the operation input and (ii) second timing indicating the detected start position of the speech. The first and second timing are set for each speech of the first and second speakers. A speech recognizer performs speech recognition on the speech whose speaker has been identified.
US11315567B2
An electronic device and an method of the electronic device are provided, where the electronic device maintains a context that does not reflect a request for a secret conversation, in response to the request for the secret conversation being received from a first user, and generates a response signal to a voice signal of a second user based on the maintained context, in response to an end of the secret conversation with the first user.
US11315566B2
In one aspect, a device may include at least one processor and storage accessible to the at least one processor. The storage may include instructions executable by the at least one processor to identify one or more commands to share content with first and second contacts. The instructions may also be executable to, based on the one or more commands to share the content, share the content with the first contact via a first application and share the content with the second contact via a second application that is different from the first application. The one or more commands to share the content may be received based on receipt of user input selecting respective selectors for the first and second contacts, where the respective selectors may be concurrently presented on a display and may each be associated with a different one of the first and second applications.
US11315561B2
[Problem] To provide an audio device having a voice operation receiving function with which the state of a voice recognition process can be notified in detail without affecting an audio playback environment, and which is inexpensive and has an excellent degree of freedom in design. [Solution] A wireless speaker 1 has a voice operation receiving function that receives an operation by a voice input into a microphone 11. The wireless speaker comprises: an LED 12; an LED control unit 18 that subjects the LED 12 to PWM control; and a lighting pattern storage unit 17 that stores a lighting pattern in which the brightness is changed on a time axis for each state of a voice recognition process. The LED control unit 18 subjects the LED 12 to PWM control in accordance with the lighting pattern stored in the lighting pattern storage unit 17 corresponding to the state of the voice recognition process performed on the voice input into the microphone 11.
US11315559B2
Implementations set forth herein relate to phasing-out of vehicle computing device versions while ensuring useful responsiveness of any vehicle computing device versions that are still in operation. Certain features of updated computing devices may not be available to prior versions of computing devices because of hardware limitations. The implementations set forth herein eliminate crashes and wasteful data transmissions caused by prior versions of computing devices that have not been, or cannot be, upgraded. A server device can be responsive to a particular intent request provided to a vehicle computing device, despite the intent request being associated with an action that a particular version of the vehicle computing device cannot execute. In response, the server device can elect to provide speech to text data, and/or natural language understanding data, in furtherance of allowing the vehicle computing device to continue leveraging resources at the server device.
US11315550B2
A speaker recognition device according to the present disclosure includes: an acoustic feature calculator that calculates, from utterance data indicating a voice of an obtained utterance, acoustic feature of the voice of the utterance; a statistic calculator that calculates an utterance data statistic from the calculated acoustic feature; a speaker feature extractor that extracts speaker feature of a speaker of the utterance data from the calculated utterance data statistic using a deep neural network (DNN); a similarity calculator that calculates a similarity between the extracted speaker feature and pre-stored speaker feature of at least one registered speaker; and a speaker recognizer that recognizes the speaker of the utterance data based on the calculated similarity.
US11315549B2
Disclosed are an Intelligent electronic device and authentication method using message sent to intelligent electronic device. The method of authenticating using a message transmitted to the intelligent electronic device comprises the steps of: receiving a first message from a first external device; learning the received first message and extracting characteristics on a user of the first external device based on the learned first message; generating a template for the user of the first external device modeled based on the extracted characteristics on the user of the first external device; receiving a second message from a second external device; determining whether a unique identifier of the first external device is the same as a unique identifier of the second external device; and comparing the second message with the template to determine whether the user of the first external device is the same person as the user of the second external device, when the unique identifier of the first external device is the same as the unique identifier of the second external device. Accordingly, the fraud of impersonating another person can be prevented. The method of authenticating using a message transmitted to the intelligent electronic device of the present disclosure may be associated with an artificial intelligence module, a drone, a robot, an augmented reality device, a virtual reality device, a device related to a 5G service, and the like.
US11315546B2
Disclosed are systems and methods for improving interactions with and between computers in content searching, generating, hosting and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The systems interact to identify and retrieve data within or across platforms, which can be used to improve the quality of data used in processing interactions between or among processors in such systems. The disclosed systems and methods provide systems and methods for automatic creation of a formatted, readable transcript of multimedia content, which is derived, extracted, determined, or otherwise identified from the multimedia content. The formatted, readable transcript can be utilized to increase accuracy and efficiency in search engine optimization, as well as identification of relevant digital content available for communication to a user.
US11315543B2
A system performs pole-zero or IIR modeling and estimation of an inter-microphone transfer function between first and second microphones that output respective first and second microphone signals. The system includes a first adaptive FIR filter to which the first microphone signal is provided, a delay element that delays the second microphone signal by a predetermined delay amount, and a second adaptive FIR filter to which the delayed second microphone signal is provided. A first coefficient of the second adaptive FIR filter is constrained to a fixed non-zero value. The filters are jointly adapted to minimize an error signal that is a difference of the two filters outputs. The delay is small: approximately the acoustic propagation delay between the two microphones and is not determined by the environmental reverberation characteristics. The error signal may serve as a noise reference in a noise canceller, for implementing far-field beamforming with low delay.
US11315541B1
The disclosed computer-implemented method may include applying, via a sound reproduction system, sound cancellation that reduces an amplitude of various sound signals. The method further includes identifying, among the sound signals, an external sound whose amplitude is to be reduced by the sound cancellation. The method then includes analyzing the identified external sound to determine whether the identified external sound is to be made audible to a user and, upon determining that the external sound is to be made audible to the user, the method includes modifying the sound cancellation so that the identified external sound is made audible to the user. Various other methods, systems, and computer-readable media are also disclosed.
US11315538B2
Noise insulation may be provided by an anti-resonant panel that includes a base panel including a base panel core material and two base panel face sheets, where each of the two base panel face sheets is adjacent to an opposite side of the base panel core material. The anti-resonant panel further includes at least one stiffener-member positioned along the base panel in a defined area of the base panel, where the defined area is less than a full area of the base panel. The stiffener-member includes a stiffener-member core having a top surface, a bottom surface in contact with the base panel, a plurality of cells having walls that extend from the top surface to the bottom surface, and a stiffener-member face sheet that is seamlessly integrated with the walls of the plurality of cells along the top surface.
US11315519B2
The invention provides a control method for improving network performance, comprising: each upstream device issues corresponding playing commands and performs filtering to the playing commands to obtain first available playing commands; a downstream device switches to a route where the first available playing commands is located, and then issues vendor command parameters; an implementation module receives the vendor command parameters, then enables a timer, and sets identification information; during the preset timer time period, the implementation module filters the first available playing commands to obtain second available playing commands; when the preset timer time period ends, the implementation module turns off the timer and resets the identification information; and the downstream device receives the second available playing commands and switches to a route where the second available playing commands is located. The present invention has the following advantageous effects: the network congestion and the transmission delay are reduced.
US11315512B2
A gate driver on array (GOA) circuit is provided. The GOA circuit includes a plurality of cascading GOA units. One of the GOA unit includes: a scan control module, an anti-backfill module connected to a constant high-level signal and the scan control module, a cascading reset module, and a gate signal output module. Base on functions of prior art solution, the provided GOA circuit of the disclosure reduces two types of signal to simplify signal traces at the bezel to realize a narrow bezel design.
US11315510B2
The present disclosure provides a display panel and a display device. The display panel is provided with a plurality of sub-pixels, the display panel including: a first substrate and a second substrate opposite to each other, and multistable liquid crystals between the first substrate and the second substrate; wherein, each of the sub-pixels is provided with a first electrode and a second electrode to generate an electric field for the multistable liquid crystals, and the multistable liquid crystals have different optical properties under different electric fields and after an electric field disappears, the multistable liquid crystals can maintain the same optical properties as the electric field exists. The present disclosure also provides a display device, including: the above mentioned display panel.
US11315509B2
A driving method for a liquid crystal display device is provided. The liquid crystal display device has a wide viewing angle mode and a narrow viewing angle mode. The driving method includes: in the wide viewing angle mode, all the frames of the liquid crystal display device have the same display brightness; in the narrow viewing angle mode, the odd frames and the even frames of the liquid crystal display device have different display brightness. In the narrow viewing angle mode of the liquid crystal display device, by using an alternate driving method of bright frames and dark frames, the mura degree is significantly reduced, and the smoothness of dynamic picture display is improved, thereby improving the use experience of users.
US11315500B2
A display device system circuit and a display device are provided. The display device system circuit includes a power supply, a plurality of functional circuit modules and a plurality of ground wires corresponding to the plurality of functional circuit modules, respectively. Operating current input ends of the plurality of functional circuit modules are electrically connected to a positive electrode of the power supply, respectively. An operating current output end of each of the functional circuit modules is electrically connected to a negative electrode of the power supply via a corresponding ground wire. The functional circuit modules will not be interfered with each other, avoiding causing abnormal displaying by signal coupling between the functional circuit modules.
US11315499B1
A display device comprises a first pattern disposed on a substrate and receiving a driving voltage, a second pattern disposed on the first pattern and receiving the driving voltage, an intermediate pattern disposed on the first pattern and receiving the driving voltage, a first source pattern disposed on the intermediate pattern and contacting the first pattern, the second pattern, and the intermediate pattern, a second source pattern disposed in the same layer as the first source pattern and contacting the intermediate pattern, and a third source pattern disposed on the second source pattern and contacting the second source pattern.
US11315495B2
A gate driving circuit including a controller for providing a first carry signal to a control node, a first pull-up portion for outputting a first clock signal as a first gate signal in accordance with a signal provided to the control node, and a second pull-up portion for outputting a second clock signal with a phase that is different from the first clock signal as a second gate signal in accordance with the signal provided to the control node.
US11315490B2
A pixel circuit, a driving method thereof and a display panel are disclosed. The pixel circuit includes a data writing circuit, a light-emitting drive circuit, and a voltage amplification circuit; the data writing circuit is electrically connected with a first node and is configured to write a data signal to the first node under control of a scan signal; two ends of the voltage amplification circuit are electrically connected with the first node and a second node respectively, and the voltage amplification circuit are configured to obtain an amplified voltage signal based on the data signal and write the amplified voltage signal to the second node; and the light-emitting drive circuit is electrically connected with the second node and is configured to drive a light-emitting component to emit light under control of the amplified voltage signal.
US11315489B1
A pixel circuit includes a drive transistor configured to control an amount of current to a light emitting device during an emission phase depending upon a voltage applied to a control terminal of the drive transistor, the drive transistor having a first terminal and a second terminal. During a first phase, an anode of the light emitting device is set to a reference voltage and the first terminal of the drive transistor is set to a fixed data voltage such that the drive transistor is stressed with a fixed source-to-gate voltage to prevent a drift of a threshold voltage in the drive transistor thereby preventing a drift in screen brightness. During a second phase, the anode of the light emitting device is set to the reference voltage and the first terminal of the drive transistor is set to a voltage of the first power supply.
US11315480B2
Provided are a pixel driving circuit, a driving method thereof, and display panel. The pixel driving circuit includes a current control circuit and a time control circuit, wherein the current control circuit is configured to receive a display data signal and control a magnitude of a driving current flowing through the current control circuit according to the display data signal; the time control circuit is configured to receive the driving current, and receive a time data signal, a first light-emitting control signal and a second light-emitting control signal, and control a flowing time period of the driving current according to the time data signal, the first light-emitting control signal and the second light-emitting control signal.
US11315477B2
A vehicle-mounted display control method includes: receiving, by a vehicle-mounted control device, a signal to be displayed transmitted by a signal source; converting, by the vehicle-mounted control device, the signal to be displayed into a relay data signal, and transmitting, by the vehicle-mounted control device, the relay data signal to a signal conversion circuit of a corresponding vehicle-mounted display assembly; and converting, by the signal conversion circuit, the relay data signal into a display drive signal, and outputting, by the signal conversion circuit, the display drive signal to at least one display screen of the vehicle-mounted display assembly, so as to drive the at least one display screen to display.
US11315473B2
A gate-on-array (GOA) driving circuit is provided, and the GOA driving circuit includes a plurality of cascading GOA driving units. Each of the GOA driving units further includes a first GOA driving sub-unit including a first signal source and a second GOA driving sub-unit including a second signal source. The first GOA driving sub-unit operates when the first signal source transmits a first signal with a high voltage, and the second GOA driving sub-unit transmitting a second signal operates when the first signal source transmits the first signal with a low voltage.
US11315472B2
A shift register unit, a gate driving circuit and a driving method thereof, a display device. The shift register unit includes: a first input circuit configured for outputting a voltage of a first voltage terminal to a pull-up node under a control of a first signal terminal; a second input circuit configured for outputting a voltage of a second voltage terminal to the pull-up node under a control of a second signal terminal; an output circuit configured for outputting a clock signal of a clock signal terminal to the signal output terminal under a control of the pull-up node; a pull-up node reset circuit configured for outputting a voltage of the third voltage terminal to the pull-up node under a control of the third signal terminal.
US11315471B2
A shift register unit, a driving device, a display device and a driving method are provided. The shift register unit includes an input circuit, a first pull-up node reset circuit, an output circuit, an output reset circuit, a pull-down node control circuit and a power-on initialization circuit. The power-on initialization circuit is configured to reset the pull-up node in response to a power-on initialization signal.
US11315468B2
A pixel driving circuit and a display device are provided. The pixel driving circuit includes a data writing unit, a driving unit, a compensating unit, and a light emitting unit. A first capacitor is provided in the driving unit. A first thin film transistor is provided between the micro light emitting diode and the driving unit. Reduce a transmission efficiency of the driving unit in different gray scale by a capacitance coupling effect of the first capacitor to the driving unit. Enhance an ability of gray scale switching of the pixel driving circuit. Improve a display effect of a display device.
US11315465B2
Disclosed is an electronic device that includes a display that outputs display data, an antenna arranged on a display area of the display, at least one processor electrically connected to the display, and a memory electrically connected to the processor, where the memory stores instructions that, when executed, cause the processor to correct the display data based on characteristic information of the antenna when a display location of the display data overlaps an arranged location of the antenna when the instructions are executed. In addition, various embodiments that are understood through the present disclosure are possible.
US11315462B2
TA dual source driver includes first and second gamma voltage generators configured to generate first and second gamma voltages, respectively, first and second latches configured to latch first and second data, respectively, a first driving cell configured to receive the first gamma voltage and the first data, and to transmit a first voltage corresponding to the first data and the first gamma voltage to a panel load based on a first switching operation, and a second driving cell configured to receive the second gamma voltage and the second data, and to transmit a second voltage corresponding to the second data and the second gamma voltage to the panel load based on a second switching operation. The first switching operation and the second switching operation may operate complementarily to each other.
US11315436B2
A system and method for providing graphical user interfaces based on computational algorithms described in printed publications. The method includes indexing a first output generated by a container; caching the indexed output in a cache memory; analyzing the printed publication to determine algorithm-indicating information of the computational algorithm; identifying, in the algorithm-indicating information, at least one input and at least one second output; generating at least one GUI element, wherein generating the at least one GUI element includes identifying an association between the printed publication and the container, wherein generating the at least one GUI element further comprises retrieving the first output from the cache memory, wherein the at least one GUI element is generated based on the retrieved first output; and generating executable code, wherein the executable code includes instructions for causing a display of the GUI including the at least one GUI element.
US11315432B2
An apparatus is provided for causing an unmanned aerial vehicle (UAV) to perform a contingency landing procedure. The apparatus includes memory and processing circuitry configured to cause the apparatus to at least determine candidate safe landing zones (SLZs) within an estimated current range of the UAV. Trajectories are generated for landing the UAV in respective ones of the candidate SLZs. Risk values are calculated that quantify third-party risk associated with operation of the UAV along respective ones of the trajectories to the respective ones of the candidate SLZs. A flight termination risk value is calculated that quantifies third-party risk associated with immediately landing the UAV at the current position. The lowest of the risk values is compared with the flight termination risk value, and a sequence is executed to operate the UAV along the trajectory to the selected one of the candidate SLZs, or immediately land the UAV.
US11315417B2
A method for wrong-way driver detection, including a step of reading in position data via an interface, the position data representing a measured position of a vehicle, a step of reading in inaccuracy data representing an inaccuracy of the position data, a step of reading in map data mapping road segments negotiable by the vehicle, and a step of ascertaining at least one plausible road segment based on the position data, the inaccuracy data and the map data, using a particle filter, the plausible road segment representing a road segment to which an instantaneous position of the vehicle may be assigned.
US11315410B2
In response to a detected presence of an intended target appliance within a logical topography of controllable appliances identity information associated with the intended target appliance is used to automatically add to a graphical user interface of a controlling device an icon representative of the intended target appliance and to create at a Universal Control Engine a listing of communication methods for use in controlling corresponding functional operations of the intended target appliance. When the icon is later activated, the controlling device is placed into an operating state appropriate for controlling functional operations of the intended target appliance while the Universal Control Engine uses at least one of the communication methods to transmit at least one command to place the intended target appliance into a predetermined operating state.
US11315405B2
Systems, methods, and software for allowing interaction between consumer appliance devices and security systems are provided herein. An exemplary method may include allowing various interactions of a user with a consumer appliance device to generate n signal, such as a panic signal, causing various forms of security systems to escalate the signal to obtain help. Another exemplary method involves allowing the device, when placing the panic signal, to involve back end systems related to the security system to provision access to an emergency service provider (i.e., 911 provider) “just in time,” eliminating the need for costly pre-provisioning. Another exemplary method involves various sensors of the security system to communicate with consumer appliance devices to improve the performance, usability, or efficiency of the consumer appliance device or related systems.
US11315403B2
Methods, systems, and apparatus for nanosatellite-based property monitoring are disclosed. A method includes receiving satellite data related to conditions of a property monitored by a monitoring system; determining, based on the satellite data, that the property is at risk from a threat; requesting, from a sensor of the monitoring system, sensor data related to the threat; receiving, from the sensor, the sensor data related to the threat; and based on analyzing the sensor data related to the threat, performing one or more monitoring system actions. The threat may include one of a weather hazard, a security hazard, or a property damage hazard. The monitoring system actions can include sending an instruction to adjust a sensor or component of the monitoring system and can include sending, to a user device, a notification that the property is at risk from the threat.
US11315399B2
A security device comprising a body having a first end and a second end, the first end being threadable into a light socket and the second end having a rotatable mount disposed thereon. The body may also include a light source disposed on the body of the security device and a slide connected to the rotatable mount, wherein the slide is configured to extend away from the mount. A camera with a lens may be disposed on a distal portion of the slide. The security device may further include a hood surrounding the lens of the camera and extending beyond the lens of the camera.
US11315398B2
Improved systems and techniques are disclosed for controlling the security states of anti-theft security systems such as product display assemblies using security fobs. The tasks relating to fob authentication are offloaded to a computer system, and these authentications can be based on identifiers for the different security fobs. The interactions between security fobs and product display assemblies can be consistent regardless of the population of authorized security fobs by using a security code that is shared by the security fobs. When attempting to use a security fob to change a security status for a product display assembly, the provision of the code to the subject product display assembly can be predicated on authorization of the subject security fob by the computer system. The computer system can maintain a list of identifiers for authorized security fobs that is easily updated when new security fobs are added to or existing security fobs are de-authorized from the system.
US11315397B2
It is disclosed an anti-tampering assembly for the transportation and storage of a package, the anti-tampering assembly being configured to be associated with the package. the anti-tampering assembly comprises: a tampering detection unit comprising a RFID passive tag and a tampering track of a conductive material configured to be connected to said RFID tag upon dispatching the package so as to inhibit the operation of the RFID tag, wherein the tampering track is configured to be interrupted in case of tampering of the package; an actuating unit configured to detect the interruption of the tampering track in case of tampering of the package and, upon detection, actuate an alarm unit; and the alarm unit comprising a radio module configured to, upon actuation, transmit an alarm message over a long range wireless communication network.
US11315395B2
A pet-activated signaling device, a pet-activated signaling system, and a method of a pet signaling a human is provided. The pet-activated signaling device includes a belt, a transducer, and multiple bells. The transducer, which emits an electromagnetic signal, and bells, which emit an audible signal, are attached to the belt. The pet-activated signaling system includes the signaling device and a receiving device which emits an alert when a signal is received from the signaling device. The method of a pet signaling a human includes pawing at the pet-activated signaling device suspended from a door handle to activate the transducer and the bells. The invention is particularly useful for use on an exterior door, allowing a dog to use a familiar method of alerting a human to open the door even if the bells are not heard by the human.
US11315394B1
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for implementing an integrated doorbell device are disclosed. In one aspect, a method includes the actions of receiving doorbell data indicating activation of a doorbell of a property. The actions further include receiving device data from one or more devices associated with a monitoring system within the property. The actions further include determining a security status associated with the monitoring system. The actions further include based on the doorbell data indicating activation of the doorbell of the property, the device data from the one or more devices associated with the monitoring system, and the security status associated with the monitoring system, determining a response action for execution by the monitoring system. The actions further include performing, by the monitoring system, the response action.
US11315392B2
A method for enhancing automated transaction machine (ATM) security surveillance. The method consists of receiving a set of data from a financial device and generating a template for the financial device. The method generates an analysis by analyzing a portion of the received set of data. The method then determines a likelihood factor that the analyzed first portion is associated with a security threat, wherein if the likelihood factor is above a threshold then the method generates a second analysis by analyzing a second portion of the received first set of data and revises the likelihood factor based on the second analysis. The method generates a notice if the first likelihood factor exceeds a second threshold and then updates the template with the analysis and the likelihood factor and receives a second set of data from the monitoring device. The method updates the template with the second set of data.
US11315391B2
An automatic teller machine includes a door having a locking part for opening and closing a medium storage space in which a medium is stored; a first slide member located at a locked position or an opened position by means of a locking or opening operation of the locking part; a second slide member for locking the door by means of engagement with the first slide member when the first slide member is in the locked position; a drive unit for moving the second slide member between a first position in which the door is locked and a second position in which the door is unlocked when the first slide member is in the locked position; and a control unit for controlling driving of the drive unit.
US11315388B2
In accordance with some embodiments, a physical game element such as a wagering chip or a playing card may be utilized to implement a promotion scheme on an electronic card table (e.g., using RFID or optical imaging technology). During a game it may be determined whether the element is associated with special functionality (e.g., entitles the player to a payout multiplier, special payout table, bonus prize or other benefit). The special functionality may have been previously associated with the element or associated with the element during the game (e.g., dynamically and/or randomly). In accordance with some embodiments a player is not able to readily discern the special functionality by a physical inspection of the physical game element and is only notified of the special functionality once the physical game element is used in a qualifying action (e.g., during a wager at an electronic card table).
US11315387B2
A fraud detection system which detects fraud in a game of performing collection and redemption of chips in accordance with a win or lose result includes a camera which captures an image of chips contained in a chip tray of a dealer, an image analyzing apparatus which analyses the image captured by the camera to detect an amount of the chips contained in the chip tray, a card distribution device which determines a win or lose result of a game, and a control device which compares the win or lose result of the game and the amount of the chips contained in the chip tray before and after collection and redemption of the chips to detect fraud.
US11315382B2
A roulette wheel device, and related devices, systems, and methods, includes a base coupled to a table, the base having a circular ball track within a circular rim. The roulette wheel device further includes a circular wheelhead rotatably coupled to the base within the ball track. The wheelhead includes a circular ring having a plurality of pockets, wherein the circular ball track is sloped downwardly toward the circular ring to direct a roulette ball into one of the plurality of pockets. The wheelhead further includes a circular display subassembly including a display device to selectively display graphical elements corresponding to the plurality of pockets. The circular ball track, the circular ring, and the circular display subassembly are substantially concentric.
US11315372B2
According to one embodiment, a method of conserving energy while seeking to wirelessly actuate an access control using a mobile device is provided. The method including: searching for a wireless signal at a first rate; detecting a wireless signal; generating a zone of interest; detecting positional data of a mobile device; and searching for a wireless signal at a second rate greater than the first rate when positional data of the mobile device indicates that the mobile device is within the zone of interest.
US11315367B2
Provided are a method and an apparatus for controlling vehicle operations, and a computer device. The method includes: acquiring current running status information of an in-vehicle component and current user operating behavior information sent by a first vehicle; determining a current running status score of the first vehicle according to the current running status information of the in-vehicle component and the current user operating behavior information from the first vehicle; and generating an operation strategy for the first vehicle according to the current running status score of the first vehicle.
US11315359B2
A biological-information detection device includes a video input section accepting video signals including three wavelength components in an infrared region of reflected light from an object, a wavelength detecting section acquiring a wavelength and an intensity of the reflected light from the video signals, a face feature amount detecting section detecting a plurality of feature points of a face based on the video signals, a measurement target area identifying section identifying a measurement target area on a basis of the plurality of feature points of the face detected, a wavelength fluctuation detecting section detecting a difference between a wavelength of reflected light from the measurement target area at a certain point in time and a wavelength of reflected light at a point in time preceding the certain point in time, and a pulse wave detecting section detecting a change in the detected difference according to the point in time.
US11315356B2
An organic light emitting diode (OLED) display panel module includes a cover plate, a first adhesive agent, a circular polarizer, an OLED display panel, and an ultrasonic fingerprint recognition module. The ultrasonic fingerprint recognition module is disposed at a lower surface of the OLED display panel. Both sides of the OLED display panel module are provided with a sound absorbing layer, both sides of the ultrasonic fingerprint recognition module are provided with the sound absorbing layer, and a portion of the lower surface of the OLED display panel not contacted the ultrasonic fingerprint recognition module is provided with the sound absorbing layer.
US11315353B1
Systems and methods for spatial-aware information extraction from electronic source documents are disclosed. Exemplary implementations may: obtain an electronic source document in electronic format, including human-readable information; obtain extracted information that has been extracted from the electronic source document; generate a character-based representation of the electronic source document that uses a grid of character positions; and present a user interface to a user to search and/or select information in the electronic source document based on the character-based representation.
US11315340B2
Disclosed are devices, systems, methods, techniques, and computer program products for estimating a Region Of Interest (ROI) corresponding to a plurality of content streams. A method may include receiving a plurality of sensor data associated with a plurality of mobile devices. The plurality of sensor data corresponds to a plurality of content streams captured by the plurality of mobile devices. Further, each of the plurality of mobile devices may include at least one recorder configured to capture a corresponding content stream. Further, a sensor data associated with a mobile device may include a location data and an orientation data of the mobile device during capturing of a content stream. The method may further include, analyzing, by the system, the plurality of sensor data and determining, by the system, a ROI based on at least the plurality of sensor data, thereby generating an estimation of the ROI.
US11315329B1
In one embodiment, a method includes accessing a plurality of points, wherein each point (1) corresponds to a spatial location associated with an observed feature of a physical environment and (2) is associated with a patch representing the observed feature, determining a density associated with each of the plurality of points based on the spatial locations of the plurality of points, scaling the patch associated with each of the plurality of points based on the density associated with the point, and reconstructing a scene of the physical environment based on at least the scaled patches.
US11315321B2
An apparatus to facilitate encoding of point cloud data is disclosed. The apparatus includes one or more processors to receive point cloud data including a plurality of images and camera parameters, generate encoded point cloud data including a color texture image and a depth image having cropped regions for each of the plurality of images, and metadata to describe the camera parameters and a mapping of the cropped regions to a real coordinate space.
US11315312B2
The disclosure provides a display cabinet and a control method thereof. The display cabinet comprises a cabinet body which defines an exhibition space, the display cabinet further comprises: a rotatable tray arranged in the exhibition space, which is configured to place an exhibit; a first camera located in the exhibition space, which is configured to capture images of the exhibit at different angles to construct a 3D model of the exhibit; a transparent touch display constituting at least a portion of the cabinet body, which is configured to display the 3D model when the transparent touch display screen is in an awake state, and acquiring a touch operation and displaying a detailed information of the exhibit according to the touch operation.
US11315306B2
An illustrative volumetric processing system generates a plurality of point clouds each representing an object from a different vantage point. Based on the plurality of point clouds, the volumetric processing system consolidates point cloud data corresponding to a surface of the object. Based on the consolidated point cloud data for the object, the volumetric processing system generates a voxel grid representative of the object. Based on the voxel grid, the volumetric processing system generates a set of rendered patches each depicting at least a part of the surface of the object. Corresponding methods and systems are also disclosed.
US11315301B1
In one embodiment, a method includes retrieving a video stream that was recorded while a first artificial-reality effect was being displayed on the video stream, where each frame of the video stream comprises a real-world scene without the first artificial-reality effect, retrieving an artificial-reality state information stream corresponding to the video stream, where the artificial-reality state information stream comprises state information associated with the first artificial-reality effect, retrieving one or more contextual data streams corresponding to the video stream, where the first artificial-reality effect displayed on the video stream was rendered based on at least a portion of the one or more contextual data streams, rendering a second artificial-reality effect based on at least a portion of the artificial-reality state information stream and a portion of the one or more contextual data streams, and displaying the second artificial-reality effect on the video stream.
US11315299B1
An image generator generates images of a set of virtual fibers and effects thereon by processing representations of the set of fibers and computing representation of a virtual surface for a fiber clump in the set of virtual fibers from an artist parameter representing a desired artist effect, computing correlations of the vertices from a set of vertices based on associations of the vertices corresponding to the artist parameter, computing a set of relevant vertices using the correlations of the vertices, computing orthogonal gradients to produce a plurality of gradients using a selected vertex and the set of relevant vertices for the fiber clump, and computing the virtual surface of the fiber clump from the plurality of gradients.
US11315294B2
To display with a display mode with which an analyst may easily ascertain actions (movements) of objects being monitored, provided is an information processing device, including a sensing unit and a display control unit. The sensing unit classifies, based on information relating to movements of objects being monitored, a plurality of objects into set movement paths. The display control unit controls a display such that the movements of the objects are displayed in a display screen of the display with an arrow in each set movement path. The axis of the arrow which is displayed in the display has a thickness according to the number of objects which are classified in the corresponding movement path, has a shape according to the trace of the objects which are classified in the corresponding movement path, and furthermore, the direction indicated by the arrow represents the direction of progress of the objects.
US11315293B2
A computer-implemented method for autonomous segmentation of contrast-filled coronary artery vessels includes receiving a CT scan volume representing a 3D volume of a region of anatomy that includes a pericardium; preprocessing the CT scan volume to output a preprocessed scan volume; converting the CT scan volume to three sets of two-dimensional slices; extracting a region of interest (ROI) by autonomous segmentation of the heart region as outlined by the pericardium, by means of three individually trained ROI extraction convolutional neural networks (CNN), each trained to process a particular one of the three sets of two-dimensional slices to output a mask denoting a heart region as delineated by the pericardium; combining the preprocessed scan volume with the mask to obtain a masked volume; converting the masked volume to three groups of sets of two-dimensional masked slices; and performing autonomous coronary vessel segmentation to output a mask denoting the coronary vessels.
US11315275B2
The present technology relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of a region of interest (ROI) on a patient. In some embodiments, the systems, methods, and/or computer readable media can identify steep changes in depths. For example, the systems, methods, and/or computer readable media can identify large, inaccurate changes in depths that can occur at edge regions of a patient. In these and other embodiments, the systems, methods, and/or computer readable media can adjust the identified steep changes in depth before determining one or more patient respiratory parameters.
US11315274B2
A method includes obtaining a reference image and a target image each representing an environment containing moving features and static features. The method also includes determining an object mask configured to mask out the moving features and preserves the static features in the target image. The method additionally includes determining, based on motion parallax between the reference image and the target image, a static depth image representing depth values of the static features in the target image. The method further includes generating, by way of a machine learning model, a dynamic depth image representing depth values of both the static features and the moving features in the target image. The model is trained to generate the dynamic depth image by determining depth values of at least the moving features based on the target image, the object mask, and the static depth image.
US11315264B2
The present disclosure provides a laser sensor-based map generation method. In an embodiment, the method includes: obtaining image data, the image data being acquired by a visual sensor; determining first point cloud data belonging to glass-like region in laser data based on the image data; adjusting a weight of the laser data according to the first point cloud data; fusing the first point cloud data and second point cloud data belonging to non-glass-like region in the laser data based on the adjusted weight of the laser data, to generate a map.
US11315261B2
An image processing method includes acquiring an image frame; tracking a face region of a user based on first prior information obtained from at least one previous frame of the image frame; based on a determination that tracking of the face region based on the first prior information has failed, setting a scan region in the image frame based on second prior information obtained from the at least one previous frame; and detecting the face region in the image frame based on the scan region.
US11315258B1
Methods, apparatus, and systems for sensing or tracking relative position between objects or locations. A digital camera or imager captures one or more fiducials in its field of view. By calibration and processing, the imaged fiducials can be identified and distinguished from other objects and background in camera space, and position of imaged fiducials in camera space relative to a reference can be translated to position of the actual fiducials in physical space. In one example, the fiducials are IR LEDs.
US11315256B2
Technology is disclosed herein for detecting motion in video using motion vectors. In an implementation, a frame of video is divided into regions and a vector score is identified for each of the regions. A selection is then made of a subset of the regions based on the identified vector scores, i.e. at least some of the regions may be excluded from further analysis based on their score. The selected subset is divided into or grouped in clusters. Motion may then be identified in response to at least one of the clusters appearing in at least one other frame of the video.
US11315252B2
A method may include acquiring MR signals by an MR scanner and generating image data in a k-space according to the MR signals. The method may also include classifying the image data into a plurality of phases. Each of the plurality of phases may have a first count of spokes. A spoke may be defined by a trajectory for filling the k-space. The method may also include classifying the plurality of phases of the image data into a plurality of groups and determining reference images based on the plurality of groups. Each of the reference images may correspond to the at least one of the phases of the image data. The method may further include reconstructing an image sequence based on the reference images and the plurality of phases of the image data.
US11315241B2
A method of fundus oculi image analysis includes acquiring a target fundus oculi image; analyzing the target fundus oculi image by a fundus oculi image analysis model determined by training to acquire an image analysis result of the target fundus oculi image; and the fundus oculi image analysis model includes at least one of an image overall grade prediction sub-model and an image quality factor sub-model. The method performs quality analysis on the target fundus oculi image by the fundus oculi image analysis model, and when the model includes the overall grade prediction sub-model, a prediction result of whether the target fundus oculi image as a whole is gradable can be acquired; when the model includes the image quality factor sub-model, the analysis result of the fundus oculi image quality factor can be acquired and the image analysis model is determined by extensive image training, and the reliability of the result of whether the image is gradable determined based on the above model is high.
US11315240B2
At least one embodiment relates to an image analysis system for tumor classification. The system is configured for receiving at least one digital image of a tissue sample; analyzing the at least one received image for identifying immune cells and tumor cells in the at least one received image; for each of the identified tumor cells, determining the distance of the tumor cell to the nearest immune cell; computing a proximity measure as a function of the determined distances; in dependence on the proximity measure, classifying the identified tumor cells into tumor cells of an inflammatory tumor or as tumor cells of a non-inflammatory tumor; and storing the classification result on a storage medium and/or displaying the classification result on a display device.
US11315223B2
An image processing apparatus is disclosed. The present image processing apparatus comprises: a memory for storing a low dynamic range (LDR) image and a processor for adjusting the brightness of the LDR image by means of a pixel-specific brightness ratio identified using a first parameter, and acquiring a high dynamic range (HDR) image by adding or subtracting a pixel-specific correction value identified using a second parameter in the brightness-adjusted LDR image.
US11315207B1
A shipping container optimization and utilization system and method for identifying and utilizing otherwise unused, deadheading shipping containers. The systems and methods aggregate, compile, and index cargo capacity data into a searchable database so that users can identify and pair loads with unused shipping containers. The systems and methods improve efficiency in transportation and shipping routes.
US11315204B2
A method can present a new sequence of online courses within a specialization for a group of new learners while maintaining a previous sequence of online courses within the specialization for a group of previous learners. The method can include maintaining a base class, associating a first learner with the base class, receiving a request to update a previous sequence of courses, generating a child class, associating a second learner with the child class, responding to a request for a sequence associated with the first learner, and responding to a request for a sequence associated with the second learner.
US11315202B2
A facility for representing home attribute values for a plurality of homes and a plurality of home attributes is described. The facility incorporates a data structure comprising, for each of the plurality of homes, for each of the plurality of attribute value sources, the capacity to store values for any of the plurality of home attributes obtained from the attribute value source.
US11315198B2
Systems and methods for performing data analysis include receiving data for performing analysis from a user. A value associated with a variable is extracted from a first file based on the data. The value associated with the variable is loaded into a second file, the second file including a formula referencing the variable. An output is generated based on the data by calculating the formula based on the value associated with the variable.
US11315195B1
Method and system for validating a plurality of policies. For example, a computer-implemented method includes receiving a plurality of policies, each policy of the plurality of policies associated with a policy lifecycle including one or more validation actions, each validation action of the one or more validation actions being associated with an action time; mapping the one or more validation actions associated with each policy of the plurality of policies on a common timeline of a shared clock; and determining the plurality of validation times based at least in part upon the action time associated with each validation action of the one or more validation actions by at least one of: minimizing the amount of validation times of the plurality of validation times; and maximizing the amount of validation actions contained within each validation time of the plurality of validation times on average across the plurality of validation threads.
US11315186B1
Methods and apparatuses are described for automatic execution of subscription-based financial instrument trading strategies in real-time. A server receives a request to deploy a trading strategy with trading strategy parameters. The server determines that a trading strategy has already been created for other users based upon the parameters. The server generates a subscription to the trading strategy, which comprises indicators needed to deploy the trading strategy. The server identifies at least one indicator that has already been calculated and calculates any of the indicators that have not already been calculated. The server deploys the trading strategy using the identified and calculated indicators.
US11315183B2
An electronic trading system and corresponding method are based on a point-to-point mesh architecture. The electronic trading system comprises a gateway, core compute node, and sequencer. The core compute node performs an electronic trading matching function. The gateway transmits a message to the core compute node via a first direct connection. The gateway transmits the message via a second direct connection to the sequencer which, in turn, transmits a sequence-marked message to the core compute node via a third direct connection. The core compute node determines relative ordering of the message among other messages in the electronic trading system based on the sequence-marked message to complete the electronic trading matching function, deterministically. The gateway, core compute node, sequencer, and respective direct connections form at least a portion of the point-to-point mesh architecture and enable the electronic trading system to perform high-speed, deterministic, electronic trading of financial instruments while exhibiting low latency, fairness, and fault tolerance, among other features.
US11315170B2
The present disclosure discloses an order allocation method. The method may include: receiving orders and extracting order information; extracting service provider information and obtaining features of service providers; determining whether the order information matches the features of the service providers, or determining whether the features of the service providers satisfy a preset condition to generate a determination result; ranking the service providers based on the determination result; generating orders to be allocated; and allocating the orders to be allocated to the service providers based on the ranking. The present disclosure also discloses an order allocation system that can perform the method above.
US11315157B1
A mobile electronic device is described that is configured to upload a commercial application to a centralized server. In an implementation, the mobile electronic device includes a memory, and a processor communicatively coupled to the memory. The mobile electronic device also includes an aggregator module stored in memory and executable by the processor. The module is also configured to instruct the processor to aggregates the product information with applicant information to generate a commercial application relating to the product, the commercial application comprising an application for services from at least one a lending entity, an insurance entity, or a third-party service entity. The module is also configured to instruct the processor to cause transmission of the commercial application to a central server. The commercial application is accessible to the at least one of the lending entity, the insurance entity, or the third-party service entity.
US11315150B2
A system, method, device, and platform for generating targeted advertisements. Transaction information for a user is received. The transaction information associated with the user is verified. The information is reconciled with advertising data associated with the transaction information. Targeted advertisements are created based on the available advertising data. The targeted advertisements are communicated to the user.
US11315127B2
Computer-powered system for determining a stability rating of an artwork piece, comprising a server, network, computer database(s) containing data regarding preservation-effecting factors and sub-factors and relating the factors and sub-factors to other pieces of artwork of various types, wherein data contained within the database forms a dynamic and searchable catalog of records of artwork pieces, at least one computing device having a software application stored therein that receives data from a user pertaining to queries about the artwork piece based on the examination of and research about the artwork and transmits the data to the network; the server applies algorithmic computations to the received data to convert it into representative grades for each factor and sub-factor and calculate a stability rating, wherein the stability rating represents the projected stability of the artwork and the resulting grades and stability rating are dependent upon the entire body of data within the database(s).
US11315122B2
The present disclosure provides an authentication method for e-wallet carrier, wherein the e-wallet carrier is stored with an authentication program, and the method comprises: an escrow institution constructs user information and a user database, and the user database has private and public key information; the escrow institution generates authentication information through the authentication program, and transmits the private key information as well as authentication program to the carrier to make the carrier in a restricted mode; when receiving verification information and confirming that its user information is correct, the escrow institution provides the authentication information to the user; after electronic receives the authentication information, the carrier is switched to be in a unlocked mode, thus to make transactions in currency. Through this, the information content of the private key information is in the custody of the escrow institution reduce the risk of man-caused loss in the private key information.
US11315116B2
Systems and methods are provided for use in authenticating consumers based on images of the consumers stored in payment cards. One exemplary method includes receiving, at a point-of-sale (POS) device, a transaction request by a consumer to purchase a product and soliciting, by the POS device, a payment device from the consumer for funding the transaction request. The method also includes retrieving, by the POS device, a reference image provisioned to the payment device, capturing, by the POS device, an image of the consumer presenting the payment device, and comparing, by the POS device, the captured image of the consumer to the reference image. The method then further includes submitting an authorization request, in response to the transaction request, when the captured image of the consumer matches the reference image, whereby the consumer is authenticated to the payment device.
US11315113B1
Disclosed herein are systems and method for transaction authorization. In one aspect, a method comprises receiving, at an authenticating device from a terminal device, a request to generate a dataset, the request comprising a plurality of data object values indicative of transaction information. The method comprises generating, based on the plurality of data object values, a transaction comprising a source identifier, a destination identifier, a transaction value, and authorization data in a form of a digital signature. The method comprises encapsulating and embedding either the at least one portion of the transaction or the symmetric encryption key in the discretionary data fields and transmitting the dataset to the terminal device that forwards the transaction to a processing service configured to reconstruct the transaction from the forwarded dataset and process the transaction in a target ledger.
US11315111B2
Disclosed herein are methods, devices, and apparatuses, including computer programs stored on computer-readable media, for testing signature verification for a blockchain system. One of the methods includes: obtaining a testing configuration from a configuration file, wherein the testing configuration specifies a cryptography algorithm used in the blockchain system, a group of one or more private keys corresponding to the cryptography algorithm, and a predetermined execution result based on the cryptography algorithm and the group of one or more private keys; signing a transaction, by encrypting data representing the transaction based on the cryptography algorithm and the group of one or more private keys, to generate one or more signed transactions; sending the one or more signed transactions to the blockchain system and receiving an execution result from the blockchain system; and determining whether the predetermined execution result is satisfied based on the execution result.
US11315109B2
During operation, a first node coupled to the blockchain sends a transaction confirmation request for a target transaction to a second node, the transaction confirmation request comprising transaction data associated with the target transaction. The first node receives a transaction confirmation response from the second node, the transaction confirmation response comprising a first data block comprising at least an identifier of the second node, first encoded transaction data generated based on a predetermined encoding scheme, and a first confirmation result. The first node generates a second data block comprising at least an identifier of the first node, second encoded transaction data generated based on the predetermined encoding scheme, and a second confirmation result; and in response to determining that each of the first confirmation result and the second confirmation result indicates that the target transaction is confirmed, stores the first data block and the second data block in the blockchain.
US11315108B2
A payment service generates multiple user profiles, each profile associated with a different user. Each user profile may be linked to multiple transaction cards and multiple numerical balances. Multiple transaction cards can be linked to a same numerical balance—even if the cards are from different user profiles. Restrictions, such as transaction type blacklists and whitelists or parent/guardian permission relationships, can be placed on particular numerical balances, or on access to particular numerical balances by particular cards. Numerical balances and transactions using particular cards may be tracked using user profiles with access to those cards and numerical balances.
US11315104B2
Described herein are various technologies pertaining to integrating account identifier (e.g., card provider(s)) into a digitization system, for example, without requiring changes to a client application on a user device (e.g., smart phone). An extensible account identifier abstraction system is provided that stores data according to a unified data model and is accessible to the user device via unified interface(s). The extensible abstraction system includes one or more plugin modules/provider relay plugin(s) that convert call(s) to the unified interface(s) and data stored according to the unified data model into provider-specific call(s) with data formatted according to a provider-specific schema.
US11315102B2
Embodiments described herein disclose a mobile device system for displaying contactless payment options to a user of a mobile device. A location of the device may be detected. The location may be transmitted to a payment services provider, and information indicating that the location corresponds to a merchant having contactless payment options may be received. In response, graphical depictions of payment options associated with a plurality of payment sources are displayed on a touch-sensitive display of the mobile device. A selection of one of the graphical depictions is received, and in response, one or more transceivers of the mobile device, such as one or more NFC transceivers, may be activated. The activation may cause the transceivers to transmit a personal account number to a point-of-sale terminal. Thus, the user is presented with contactless payment options based on a geographical location, and may be presented with a suggested payment source.
US11315093B2
Systems and associated methods for recycling and performing other processes with consumer electronic devices are described herein. In various embodiments, the present technology includes systems and methods for identifying and evaluating a used or pre-owned consumer electronic device, such as a mobile phone, laptop, etc. to facilitate purchasing the device. In some embodiments, the present technology includes a counter-top evaluation terminal that evaluates a device and facilitates purchase and recycling of the device. Various other aspects of the present technology are described herein.
US11315090B1
A financial management network is disclosed for optimizing interest return and/or deposit insurance coverage among a plurality of online accounts that may include one or more savings accounts and a checking account, by automatically allocating and transferring funds among the accounts without intervention of the account holder, in accordance with constraints that may be set by the financial management network, account holder, the account holder's financial advisor, and/or imposed by the associate financial institutions holding the accounts.
US11315083B2
An asset management method for a substation includes deriving an optimal management plan by each element of the substation depending on integrity of the each element of the substation and deriving an optimal unique reliability model for each element of the substation through a process of compensating a reference reliability model of each substation type and an apparatus executing the method.
US11315081B2
A resource reservation system includes an information processing apparatus configured to manage reservation information of one or more resources, and an information processing terminal configured to acquire the reservation information from the information processing apparatus. The information processing apparatus includes first circuitry configured to provide information necessary for transmitting the reservation information to the information processing terminal. The information processing terminal includes second circuitry configured to receive the information provided by the first circuitry. The information processing terminal can acquire the reservation information from the information processing apparatus by using the information received by the second circuitry.
US11315077B2
A manufacturing materiel management system. The system comprises a manufacturing assembly line to manufacture an object comprising a plurality of parts. The system also comprises a computer to monitor an input device for input that indicates a disruption event defined as an event in which manufacture of the object is disrupted as a result of loss of a resource or the part, or a shortage of human resources. Responsive to receiving the input, the computer system calculates another project which may continue, calculates remaining resources which may be allocated to the other projects, and generate a resource re-allocation plan which defines how remaining resources are to be re-allocated to the other project. A communication system in communication with the computer is configured to communicate the re-allocation plan to a manager of the manufacturing assembly line.
US11315076B2
Systems and methods that may be used to automatically generate inventory templates for use with an accounting platform. The automatically generated templates may be for a first user within a particular industry and may be based on established inventory trees of other system users within the same industry that have similar demographics of the first user.
US11315074B2
The present invention describes a shelf system for monitoring items coupled with support utilities. The system is configured to detect item change caused by customer actions and optimize the camera system and computing resources of a remote server. The system also is configured to sense certain visual indicators with customer actions.
US11315071B1
Systems and methods for tracking inventory are provided herein. In some embodiments, a method for tracking inventory includes receiving weight sensor data representing a weight of a physical item in the storage unit, adding the weight of the physical item to a profile corresponding to the physical item, determining that the weight of the physical item is less than a predetermined threshold weight associated with the physical item, generating notification information associated with the physical item, and sending the notification information. In some embodiments, a method for tracking inventory includes receiving sensor data representing a location of a physical item, adding the location of the physical item to a profile corresponding to the physical item, receiving audio data representing a request for the location of the physical item, retrieving the location of the physical item from the profile, generating responsive data representing the of the physical item, and sending the responsive data.
US11315070B2
A method and apparatus for storing information. The method comprises: generating a traceability code of an article, and associating the traceability code of the article with the article (201); collecting circulation information of the article (202); determining a form data item corresponding to the circulation information of the article (203); and according to the traceability code of the article, and a correlation between the form data item corresponding to the circulation information of the article and the circulation information of the article, storing the traceability code of the article, the form data item corresponding to the circulation information of the article and the circulation information of the article (204).
US11315062B2
The present approach relates to an automated approach for verifying sufficiency of and/or quality of a service operation performed on an asset by a field engineer. In one implementation the approach employs autonomous tests and/or compares performance of the serviced asset with that of comparable peers operating in similar or co-local environments.
US11315058B2
Described herein is a computer-implemented method. The method comprises receiving an operation notification in respect of a gated operation from a change requesting system, determining an issue type associated with the gated operation, and creating an issue of the determined issue type. The method further comprises determining that the issue has transitioned state from a pending workflow state to a particular operation resolution workflow state and, in response, generating an operation resolution message which is communicated to the change requesting system.
US11315057B2
A power storage device management system includes a storage device configured to store power storage devices that are removably mounted on an electric power device using electric power and a server device communicatively connected to the storage device. The server device includes a first storage unit storing identification information of a power storage device shared by a plurality of users among the power storage devices as storage identification information. The storage device includes a second storage unit storing the storage identification information received from the server device and a determiner configured to determine whether or not reception of the power storage device is possible on the basis of the storage identification information stored in the second storage unit when the power storage device has been received from a user.
US11315052B2
A system and a method for tracking agricultural commodities, such as crop inventories, is based on measuring a flow of crop through an equipment unit during a period of time, and determining the flow of crop through the unit to be a transfer event. More particularly, there is measured a quantity of crop in a first equipment unit; followed by a detection of a presence of one or more additional equipment units proximate the first equipment unit; and by a determination of at least one crop transfer event between the first equipment and at least one of the additional equipment units based on a change in the quantity of crop in the first equipment unit and the detection of presence.
US11315046B1
Machine learning-based disaster modeling and high-impact weather event forecasting are provided herein. Embodiments herein provide a flexible machine-learning platform for providing skillful forecast of severe weather (tornadoes, damaging wind gusts, and hail), tropical cyclone activity, and precipitation, with skill potentially extending to 13 months or more.
US11315041B1
Methods, systems, and apparatus, including computer-readable media, for machine learning in a multi-tenant data sharing platform. In some implementations, a server system provides a multi-tenant data sharing platform configured to selectively use stored data collected for different tenant organizations according to policy data for the respective tenant organizations. A request from one organization is received to perform a machine learning task involving a data set of a different tenant organization. The server system uses stored policy data to determine an applicable data policy, and based on the determination, the server system performs the machine learning task and provides the results of the machine learning task.
US11315037B2
There is provided a system for computing a secure statistical classifier, comprising: at least one hardware processor executing a code for: accessing code instructions of an untrained statistical classifier, accessing a training dataset, accessing a plurality of cryptographic keys, creating a plurality of instances of the untrained statistical classifier, creating a plurality of trained sub-classifiers by training each of the plurality of instances of the untrained statistical classifier by iteratively adjusting adjustable classification parameters of the respective instance of the untrained statistical classifier according to a portion of the training data serving as input and a corresponding ground truth label, and at least one unique cryptographic key of the plurality of cryptographic keys, wherein the adjustable classification parameters of each trained sub-classifier have unique values computed according to corresponding at least one unique cryptographic key, and providing the statistical classifier, wherein the statistical classifier includes the plurality of trained sub-classifiers.
US11315036B2
Techniques are disclosed for a computer system to predict a next sample for a data stream that specifies data values of one or more variables. A current subset of data values and previous subsets of data values is determined, and polyline simplification techniques may then be used on the subset to produce a reduced-sample current subset of data values that are converted to an angular coordinate system. A space partitioning data structure such as a k-dimensional tree that stores converted reduced-sample previous subsets of the data stream may then be traversed to determine one or more nearest neighbors to the current subset. The predicted next sample for the data stream may be generated from the nearest neighbors. The space partitioning data structure may be updated to include the current subset, and the process may be repeated with a new current subset.
US11315015B2
The present invention provides a system and method of side-stepping the need to retrain neural network model after initially trained using a simulator by comparing real-world data to data predicted by the simulator for the same inputs, and developing a mapping correlation that adjusts real world data toward the simulation data. Thus, the decision logic developed in the simulation-trained model is preserved and continues to operate in an altered reality. A threshold metric of similarity can be initially provided into the mapping algorithm, which automatically adjusts real world data to adjusted data corresponding to the simulation data for operating the neural network model when the metric of similarity between the real world data and the simulation data exceeds the threshold metric. Updated learning can continue as desired, working in the background as conditions are monitored.
US11315012B2
Systems and techniques for neural network training are described herein, a training set may be received for a neural network. Here, the neural network may comprise a set of nodes arranged in layers and a set of inter-node weights between nodes in the set of nodes. The neural network may then be iteratively trained to create a trained neural network. An iteration of the training may include generating a random unit vector and creating an update vector by calculating a magnitude for the random unit vector based on a degree that the random unit vector matches a gradient—where the gradient is represented by a dual number. The iteration may continue by updating a parameter vector for an inter-node weight by subtracting the update vector from a previous parameter vector of the inter-node weight. The trained neural network may then be used to classify data.
US11315011B2
The compression system trains a machine-learned encoder and decoder through an autoencoder architecture. The encoder can be deployed by a sender system to encode content for transmission to a receiver system, and the decoder can be deployed by the receiver system to decode the encoded content and reconstruct the original content. The encoder is coupled to receive content and output a tensor as a compact representation of the content. The content may be, for example, images, videos, or text. The decoder is coupled to receive a tensor representing content and output a reconstructed version of the content. The compression system trains the autoencoder with a discriminator to reduce compression artifacts in the reconstructed content. The discriminator is coupled to receive one or more input content, and output a discrimination prediction that discriminates whether the input content is the original or reconstructed version of the content.
US11314999B2
The present invention relates generally a method to authenticate a data carrier, such as passports, licenses, identification card . . . by hiding at least two optically encoded image within a data carrier so that the data carrier is authenticated through at least two factor authentication process. In the methods of the present invention, at least two reliable, readable optically encoded image are hidden within the data carrier wherein each of the encoded image is visible through a same decoder device but under different specific lighting conditions without the former having influence on the quality of the latter. The authentication methodology of the present invention provides an improved security, being even more difficult to reproduce by infringers, even more difficult to remove, replace or exchange and easy to check.
US11314997B1
A barcode tag includes a base layer having a front side and a back side, an attachment surface disposed on at least a portion of the front side or the back side, and a barcode symbol comprising plural perforations formed entirely through the base layer. Methods and systems for tracking equipment items in an equipment rack using barcode tags are also disclosed.
US11314995B2
An image processing comprising: an obtaining unit configured to obtain image data of a rectangle unit of input image; a compression unit configured to perform the compression processing for compressing the image data on a per rectangle unit basis from the rectangle unit at the front edge to the rectangle unit at the rear edge of the rectangle line in a case where the input image is rotated by a predetermined angle in a first direction; wherein, in a case where the input image is rotated by the predetermined angle in a direction opposite to the first direction, the compression unit compresses the image data on a per rectangle unit basis from the rectangle unit at the rear edge to the rectangle unit at the front edge of the rectangle line.
US11314993B2
An action recognition system is provided that includes a device configured to capture a video sequence formed from a set of unlabeled testing video frames. The system further includes a processor configured to pre-train a recognition engine formed from a reference set of CNNs on a still image domain that includes labeled training still image frames. The processor adapts the recognition engine to a video domain to form an adapted engine, by applying non-reference CNNs to domains that include the still image and video domains and a degraded image domain that includes labeled synthetically degraded versions of the frames in the still image domain. The video domain includes random unlabeled training video frames. The processor recognizes, using the adapted engine, an action performed by at least one object in the sequence, and controls a device to perform a response action in response to an action type of the action.
US11314991B2
An information display method includes converting P (P≥2) high-dimensional data respectively obtained from P images each tagged with a label representing a result of classification into one of a plurality of classes to respectively acquire P low-dimensional data, generating a plot diagram including P plot points obtained by visualizing the P low-dimensional data each depending on the classification result, generating auxiliary information corresponding to a base point set as one of the plot points included in the plot diagram and N (1≤N
US11314986B2
For each of a plurality of images, a learning device acquires first training data including an image, a class of each of one or more objects shown in the image, and the number of objects, from a storage. The learning device trains a feature extraction part, a class estimation part, and an object number estimation part using the first training data. For each of images of which the number is smaller than the plurality of images, the learning device acquires second training data including an image and coordinates of each of one or more objects in the image, from the storage. The learning device causes the trained feature extraction part to output a feature map of the image included in the second training data, and trains a coordinate estimation part using the feature map and the coordinates included in the second training data.
US11314981B2
There is provided an information processing system capable of appropriately assisting in creation of a marker, an information processing method, and a program. The information processing system includes an acquisition part configured to acquire a recognition result of a marker that a user is making, and a display control part configured to cause a display face to display assistance information for assisting in creation of the marker depending on the recognition result in association with the marker in process of creation.
US11314978B2
Provided herein are a calibration method for a fingerprint sensor and a display device using the calibration method, where, in the calibration method for a fingerprint sensor, the fingerprint sensor includes a substrate, a light-blocking layer located on a first surface of the substrate and having openings formed in a light-blocking mask, a light-emitting element layer located on the light-blocking layer and having a plurality of light-emitting elements, and a sensor layer located on a second surface of the substrate and having a plurality of photosensors; and the calibration method includes generating calibration data through white calibration and dark calibration, and applying offsets to the plurality of photosensors using the calibration data.
US11314961B2
A texture image acquisition method, a texture image acquisition circuit and a display panel are provided. The texture image acquisition circuit includes a photosensitive circuit, the texture image acquisition method includes: allowing the photosensitive circuit to receive light from a texture, and obtaining a first curve based on a signal amount accumulated by the photosensitive circuit within a first integral time period, the first curve being a time-varying curve of a residual signal amount which is a signal amount remaining after a signal amount, left over by the photosensitive circuit before the first integral time period, is released over time; obtaining a first acquisition value based on a signal amount accumulated by the photosensitive circuit within a second integral time period which is after the first integral time period; obtaining a first photosensitive signal of an image of the texture; based on the first curve and the first acquisition value.
US11314953B2
This disclosure relates to tagging of materials and objects and analysis for authentication thereof. An example method includes analyzing separately a number of locations distributed across a given surface of a solid object according to one or more analysis technologies to determine feature data for each of the locations. The feature data are indicative of a respective chemical property and/or mechanical property of the solid object at each of the locations, corresponding to a feature tag, and the feature data depend on the one or more analysis technologies. The method also includes determining a tag signature for the solid object based on the feature data determined for each of the locations.
US11314952B2
Systems and methods of identifying wearable tags or other items within a facility. The location of the identifiable item can be calculated by the system and used to improve the efficiency of the facility or to dispatch emergency help or maintenance to the location of the badge.
US11314936B2
A system and method for assembling segments of recorded music or video from among various versions or variations of a recording, into a new version or composition, such that a first segment of a first version of a recorded work is attached to a segment of a second segment of a second version of the recorded work, to create a new version of the recorded work.
US11314933B2
An example method includes determining a subset of content displayed by an application on a user interface (UI) of a user device, wherein the subset excludes user-specific information. The method further includes transmitting a request to a remote provider for at least one template for use with the application, wherein the request comprises the subset of content displayed on the UI. The method also includes receiving a response to the request from the remote provider, wherein the response comprises the at least one template indicating how to process user input data in one or more text input fields displayed by the application on the UI, and generating a prompt to authorize transmission of the one or more user input values to the remote provider for future use in autofill, wherein the prompt is customized by processing the one or more user input values using the at least one template.
US11314927B1
An online document system maintains a document comprising document content. Users can edit document of the online document system by in the form of operations (which represent desired changes to document content). Instead of directly applying the received operations to the document content, the online document system consolidates operations into a tracked change object based on a common intent of the operations. To render the document content (with tracked change object) the online document system applies the set of operations to the document content and generates a tracked change indication to highlight content changed by the set of operations.
US11314926B2
Systems, methods performed by data processing apparatus and computer storage media encoded with computer programs for receiving feedback from a client device at which a presentation page of content items is displayed, the received feedback relating to an affirmative act performed by the user, determining, based at least in part on the received feedback, whether the user is likely to perform a predetermined action relative to one or more of the content items, based on a result of the determining, selectively identifying one or more replacement content items and transmitting the one or more identified replacement content items to the client device for display in the presentation page in place of one or more of the plurality of content items.
US11314923B2
This specification discloses an information presentation method and device. The method includes: determining at least one display object on a display page; obtaining information related to the at least one display object; and presenting the information related to the display object. At least part of a presentation area of the information overlaps with a display area of the related display object.
US11314919B2
Disclosed are a semiconductor device and a method of fabricating the same. The semiconductor device includes an area-oriented region and a performance-oriented region, standard cells disposed on each of the area-oriented region and the performance-oriented region, and a routing metal layer on the standard cells. The routing metal layer includes first routing lines on the area-oriented region and second routing lines on the performance-oriented region. The smallest line width of the first routing lines is a first width, the smallest line width of the second routing lines is a second width greater than the first width, a pitch between the first routing lines is a first pitch, and a pitch between the second routing lines is a second pitch greater than the first pitch.
US11314913B2
An information processing apparatus includes a conversion unit configured to convert circuit configuration data representing a configuration of an electric circuit including an input terminal group and an output terminal group into circuit calculation data including an equation group that generates an output signal group corresponding to an argument group given to a variable group and an input signal group given to the input terminal group, wherein the argument group includes a constant representing a characteristic of a circuit element that forms the electric circuit.
US11314912B2
An IC design data base generating method, including: receiving a condition parameter, which comprises a process parameter and an operating parameter range comprising at least one operating parameter; and testing at least one cell according to the process parameter and the operating parameter range to generate a delay value data base. The delay value data base comprises a plurality of delay values, wherein the plurality of delay values for an identical cell correspond to the operating parameter range with an identical type but different value. An IC design method using the delay value data base is also disclosed.
US11314908B2
A repository is configured in a hybrid data processing environment comprising a classical computing system and a quantum computing system, to hold a plurality of quantum circuit components (QCC(s)). A degree of difficulty in simulating the received QCC in the classical computing system is transformed into a classical hardness score. A degree of difficulty in implementing the received QCC in the quantum computing system is transformed into a quantum hardness score. A first parameter in a metadata data structure associated with the received QCC is populated with the classical hardness score. A second parameter in the metadata data structure associated with the received QCC is populated with the quantum hardness score. The received QCC is transformed into a library element by at least augmenting the received QCC with the metadata data structure. The library element is added to the repository.
US11314899B2
A method for detection of tampering in an executable code including one or more code blocks. The method includes monitoring execution of the executable code with a call stack data structure associated therewith, the execution involving accessing one or more address spaces; receiving information about the one or more address spaces, as accessed; comparing the received information about one or more accessed address spaces with information about one or more allowed address spaces defined in the call stack data structure of the executable code; raising a flag upon detection that the one or more accessed address spaces are different from the one or more allowed address spaces, based on the comparison; and executing an action based on the raised flag.
US11314892B2
A method, a computerized apparatus and a computer program product for mitigating governance and regulation implications on machine learning. A governance impact assessment is generated for a partial data set generated by applying a data governance enforcement on a data set of instances comprising valuations of a feature vector. The partial data set comprises partial instances each comprising partial feature vectors. The governance impact assessment comprises information about data excluded from the data set. A machine learning model trained based on the partial data set and configured to provide an estimated prediction for a partial instance is obtained. A set of core features is determined. A bias introduced by the data governance is identified based on a core feature being affected by the data governance. In response to identifying a bias, an anti-bias procedure is applied on the machine learning model, whereby mitigating the bias introduced by the data governance.