一种振荡烧结制备全陶瓷微封装弥散燃料的方法

    公开(公告)号:CN115295198B

    公开(公告)日:2024-03-19

    申请号:CN202210932513.0

    申请日:2022-08-04

    Abstract: 本发明公开了一种振荡烧结制备全陶瓷微封装弥散燃料的方法,包括以下步骤:S1、将多层包覆燃料微球和SiC粉体装入喷涂有氮化硼的石墨模具内;S2、将石墨模具放入振荡烧结炉内进行振荡烧结:温度控制过程为:室温~1200℃的升温速率为5~15℃/min,1200℃~目标温度的升温速率为3~5℃/min,在目标温度下保温,保温结束后,随炉冷却;压力控制为:在升温到目标温度前,保持1~5MPa压力,在达到目标温度之后,施加目标振荡压力,保温结束后,进行卸压。本发明不仅能够实现SiC基体烧结致密化,且相比热压烧结,具有较低烧结温度、较高的致密化速率。

    一种复合材料、制备方法和用途

    公开(公告)号:CN115045108A

    公开(公告)日:2022-09-13

    申请号:CN202210801136.7

    申请日:2022-07-08

    Abstract: 为解决现有技术中缺乏对电磁和电离辐射都能起到防护作用的防护材料的技术问题,本发明实施例提供一种复合材料、制备方法和用途,包括:将硅烷偶联剂改性填料和纺丝液混匀后,得到硅烷偶联剂改性填料/PAN纺丝液;将硅烷偶联剂改性填料/PAN纺丝液通过静电纺丝制成填料/PAN纳米纤维无纺布;将填料/PAN纳米纤维无纺布进行热拉伸后,进行磁控溅射,以在热拉伸后的填料/PAN纳米纤维无纺布表面制备导电金属层,得到具有电磁屏蔽和电离屏蔽功能的复合材料。本发明实施例避免了现有技术中缺乏对电磁和电离辐射都能起到防护作用的防护材料的缺陷,本发明实施例的复合材料具有电磁屏蔽性能和电离屏蔽功能,其具有很强的可设计性和穿着舒适性,适合用作防护面料和防护服。

    一种含共沉积复相界面的SiCf/SiC复合材料制备方法

    公开(公告)号:CN110483055B

    公开(公告)日:2021-09-28

    申请号:CN201910727806.3

    申请日:2019-08-08

    Abstract: 本发明公开了一种含共沉积复相界面的SiCf/SiC复合材料制备方法,包括以下步骤:采用CVI工艺对SiC纤维预制体进行界面沉积,以丙烯为碳源气体、以三氯甲基硅烷为碳化硅源气体进行共沉积;载气为氢气,稀释气体为氩气和氢气;利用CVI工艺对完成界面沉积的SiC纤维预制体进行SiC基体沉积,碳化硅源气体为三氯甲基硅烷,载气为氢气,稀释气体为氩气和氢气。制备获得的SiCf/SiC复合材料,在纤维与基体之间为PyC‑SiC复相界面,PyC‑SiC复相界面是共沉积形成的、由SiC纳米晶和热解炭相PyC组成的复相界面。本发明提供的制备方法,主要包括利用CVI共沉积制备PyC‑SiC复相界面以及SiC基体的致密化两个主要步骤,界面制备更容易控制且制备效率也更高;所制备的SiCf/SiC复合材料的强韧性得到进一步提高。

    一种含共沉积复相界面的SiCf/SiC复合材料制备方法

    公开(公告)号:CN110483055A

    公开(公告)日:2019-11-22

    申请号:CN201910727806.3

    申请日:2019-08-08

    Abstract: 本发明公开了一种含共沉积复相界面的SiCf/SiC复合材料制备方法,包括以下步骤:采用CVI工艺对SiC纤维预制体进行界面沉积,以丙烯为碳源气体、以三氯甲基硅烷为碳化硅源气体进行共沉积;载气为氢气,稀释气体为氩气和氢气;利用CVI工艺对完成界面沉积的SiC纤维预制体进行SiC基体沉积,碳化硅源气体为三氯甲基硅烷,载气为氢气,稀释气体为氩气和氢气。制备获得的SiCf/SiC复合材料,在纤维与基体之间为PyC-SiC复相界面,PyC-SiC复相界面是共沉积形成的、由SiC纳米晶和热解炭相PyC组成的复相界面。本发明提供的制备方法,主要包括利用CVI共沉积制备PyC-SiC复相界面以及SiC基体的致密化两个主要步骤,界面制备更容易控制且制备效率也更高;所制备的SiCf/SiC复合材料的强韧性得到进一步提高。

    一种核壳结构屏蔽材料及其制备方法

    公开(公告)号:CN115305598B

    公开(公告)日:2023-06-27

    申请号:CN202211017241.8

    申请日:2022-08-23

    Abstract: 本发明公开了一种核壳结构屏蔽材料及其制备方法,核壳结构屏蔽材料,包括核层和壳层,所述壳层同轴设置在核层外侧;所述核层以聚乙烯醇作为基体,采用碳系填料作为电磁屏蔽功能填料;所述壳层以聚丙烯腈作为基体,采用重金属作为电离屏蔽功能填料;所述核壳结构屏蔽材料采用同轴纺丝进行静电纺丝制成。由于本发明的核壳结构屏蔽材料采用同轴纺丝技术制成,同轴纺丝能够使屏蔽材料的内部纤维分布均匀,避免因屏蔽材料的内部纤维分布不均匀导致的屏性能下降,即本发明所述核壳结构屏蔽材料具有较高的电磁屏蔽功能和电离屏蔽功能。

    一种核壳结构屏蔽材料及其制备方法

    公开(公告)号:CN115305598A

    公开(公告)日:2022-11-08

    申请号:CN202211017241.8

    申请日:2022-08-23

    Abstract: 本发明公开了一种核壳结构屏蔽材料及其制备方法,核壳结构屏蔽材料,包括核层和壳层,所述壳层同轴设置在核层外侧;所述核层以聚乙烯醇作为基体,采用碳系填料作为电磁屏蔽功能填料;所述壳层以聚丙烯腈作为基体,采用重金属作为电离屏蔽功能填料;所述核壳结构屏蔽材料采用同轴纺丝进行静电纺丝制成。由于本发明的核壳结构屏蔽材料采用同轴纺丝技术制成,同轴纺丝能够使屏蔽材料的内部纤维分布均匀,避免因屏蔽材料的内部纤维分布不均匀导致的屏性能下降,即本发明所述核壳结构屏蔽材料具有较高的电磁屏蔽功能和电离屏蔽功能。

    一种高致密度复合材料包壳管的快速致密化方法及其装置

    公开(公告)号:CN110428918B

    公开(公告)日:2021-07-20

    申请号:CN201910727873.5

    申请日:2019-08-08

    Abstract: 本发明公开了一种高致密度复合材料包壳管的快速致密化方法,依次包括以下工序:工序A,沉积温度为1000~1050℃,沉积压力为200~1000Pa,H2/MTS的摩尔体积配比在6.5~10范围;工序B,沉积温度为1050~1100℃,沉积压力为200~1000Pa,H2/MTS的摩尔体积配比在6.5~10范围;工序C,沉积温度为1050~1100℃,沉积压力为400~1500Pa,H2/MTS的摩尔体积配比在6.5~10范围;工序D,沉积温度为1050~1200℃,沉积压力为400~1500Pa,H2/MTS的摩尔体积配比在4~10范围。实施上述快速致密化方法的装置,包括依次连接的导气管、气体混合滞留罐、基座、限域反应器和盖板。采用本发明提供的工艺及装置获得的SiCf/SiC复合材料包壳管制备周期大幅缩短,且其具有致密度高、基体分布均匀的有益效果。

    一种高致密度复合材料包壳管的快速致密化方法及其装置

    公开(公告)号:CN110428918A

    公开(公告)日:2019-11-08

    申请号:CN201910727873.5

    申请日:2019-08-08

    Abstract: 本发明公开了一种高致密度复合材料包壳管的快速致密化方法,依次包括以下工序:工序A,沉积温度为1000~1050℃,沉积压力为200~1000Pa,H2/MTS的摩尔体积配比在6.5~10范围;工序B,沉积温度为1050~1100℃,沉积压力为200~1000Pa,H2/MTS的摩尔体积配比在6.5~10范围;工序C,沉积温度为1050~1100℃,沉积压力为400~1500Pa,H2/MTS的摩尔体积配比在6.5~10范围;工序D,沉积温度为1050~1200℃,沉积压力为400~1500Pa,H2/MTS的摩尔体积配比在4~10范围。实施上述快速致密化方法的装置,包括依次连接的导气管、气体混合滞留罐、基座、限域反应器和盖板。采用本发明提供的工艺及装置获得的SiCf/SiC复合材料包壳管制备周期大幅缩短,且其具有致密度高、基体分布均匀的有益效果。

Patent Agency Ranking