一种提高加压电渣重熔高氮马氏体不锈钢洁净度的方法

    公开(公告)号:CN113388740B

    公开(公告)日:2023-03-14

    申请号:CN202110652260.7

    申请日:2021-06-11

    申请人: 东北大学

    摘要: 本发明的技术方案提供了一种提高加压电渣重熔高氮马氏体不锈钢洁净度的方法,涉及不锈钢冶炼领域。本发明提供的提高加压电渣重熔高氮马氏体不锈钢洁净度的方法,在加压电渣重熔时,使用由预熔渣添加Na2O制备得到的渣料,能够提高熔渣‑金属间硫分配系数、改善脱硫传质动力学条件,从而强化加压电渣重熔脱硫能力,减少加压电渣重熔铸锭的夹杂物含量,仅以现有的加压电渣炉为基础,即可制备出硫含量更低、夹杂物尺寸更小、组织均匀且性能优异的电渣锭,实现了高氮马氏体不锈钢制备中高洁净度控制要求。

    一种基于噪声和温度的电弧炉泡沫渣高度控制方法及系统

    公开(公告)号:CN115679038A

    公开(公告)日:2023-02-03

    申请号:CN202211344171.7

    申请日:2022-10-31

    IPC分类号: C21C5/54 C21C5/30

    摘要: 本发明涉及一种基于噪声和温度的电弧炉泡沫渣高度控制方法及系统,首先获取目标工艺条件对应的噪声控制范围以及温度控制范围,其中噪声控制范围为泡沫渣合理埋弧的噪声范围,所述温度控制范围为泡沫渣合理埋弧的温度范围,然后获取电弧炉中设定时间段内的动态平均温度以及动态平均声强,通过判断动态平均温度以及动态平均声强是否处于噪声控制范围以及温度控制范围内,来控制吹氧和喷碳。本发明通过将动态数据与控制范围相比较,更加客观地分析出电弧炉内泡沫渣的高度情况,进而控制吹氧和喷碳,避免了因操作人员的主观因素造成泡沫渣高度调控的误差,从而实现对电弧炉内泡沫渣的高度进行精准有效地控制。

    一种抑制超级奥氏体不锈钢方坯中心合金元素偏析的方法

    公开(公告)号:CN115519082A

    公开(公告)日:2022-12-27

    申请号:CN202211306815.3

    申请日:2022-10-25

    IPC分类号: B22D11/108 B22D11/16

    摘要: 本发明提供了一种抑制超级奥氏体不锈钢方坯中心合金元素偏析的方法,涉及超级奥氏体不锈钢方坯连铸生产技术领域。本发明通过向超级奥氏体不锈钢钢液中喂入交错协同振动的不锈钢钢带,减轻合金元素的中心富集,强化了钢带对钢液中心合金元素的稀释作用,有效解决了超级奥氏体不锈钢合金元素中心偏析严重的问题,改善铸锭内部质量,为制备高质量超级奥氏体不锈钢产品提供了技术保障。本发明的方法适用于边长为150~250mm的超级奥氏体不锈钢方坯的连铸生产。此外,本发明采用低合金含量的不锈钢外皮包裹超级奥氏体不锈钢内芯,防止合金元素过度氧化,进一步改善方坯质量。

    一种电渣重熔铸锭过程的最佳熔化速度确定方法

    公开(公告)号:CN115206446A

    公开(公告)日:2022-10-18

    申请号:CN202210693391.4

    申请日:2022-06-17

    申请人: 东北大学

    摘要: 本发明涉及一种电渣重熔铸锭过程的最佳熔化速度确定方法,包括:S1、基于实际电极信息、铸锭信息和渣量信息,建立几何模型,基于所述几何模型,构建计算域;S2、分别将材料属性赋予对应的计算域,并对计算域进行网格划分;S3、根据预先建立的瞬态多物理场耦合分析模型,模拟不同重熔电流下铸锭的凝固过程,得到计算域的温度场分布数据和合金分布数据;S4、根据不同重熔电流下温度场分布数据和合金分布数据,计算得到电极熔化速度和合金局部凝固时间,将最小的合金局部凝固时间对应的电极熔化速度作为最佳熔化速度。本发明的方法能够根据实际生产中的工艺参数,确定较佳的电极熔化速度,从而提高铸锭的凝固质量。

    一种高钴高钼超硬型高速钢及改善其热加工性能的方法

    公开(公告)号:CN113355584A

    公开(公告)日:2021-09-07

    申请号:CN202110652006.7

    申请日:2021-06-11

    申请人: 东北大学

    摘要: 本发明属于高速钢技术领域,具体涉及一种高钴高钼超硬型高速钢及改善其热加工性能的方法。本发明提供的改善方法,包括以下步骤:将工业纯铁、含铬原料、含钼原料、金属钨、金属钴、石墨、工业硅、含锰原料、含钒原料进行感应熔炼,得到钢水;将所述钢水浇铸得到的铸锭进行加压电渣重熔,得到电渣锭;所述加压电渣重熔过程中凝固压力为1~2MPa;将所述电渣锭依次进行高温热处理和锻造,得到高钴高钼超硬型高速钢锻件。通过提高加压电渣重熔凝固压力,提高了电渣锭冷却速率,细化了共晶碳化物;同时通过高温热处理使电渣锭中M2C共晶碳化物分解及球化,改善了碳化物的形态和尺寸,进而提高了高钴高钼超硬型高速钢的热加工性能和加工成材率。

    一种用于热作模具钢H13的铸态枝晶腐蚀剂及其使用方法

    公开(公告)号:CN112903402A

    公开(公告)日:2021-06-04

    申请号:CN202110080865.3

    申请日:2021-01-21

    申请人: 东北大学

    摘要: 本发明提供了一种用于热作模具钢H13的铸态枝晶腐蚀剂,包括水、硝酸溶液、硫酸溶液、表面活性剂、氯化镁、氯化铁和氯化锌。本发明以具有强腐蚀性的硝酸溶液和硫酸溶液为主要成分,能够清晰有效地腐蚀枝晶组织;再添加一定量的氯化镁、氯化铁、氯化锌,可以使热作模具钢H13中的Cr、Fe等元素优先脱溶,并且氯离子对金属的腐蚀有显著作用,有利于提高腐蚀剂的腐蚀效率;表面活性剂的使用可以减缓腐蚀速率,以避免腐蚀过快影响腐蚀效果。实施例的结果显示,采用本发明提供的铸态枝晶腐蚀剂腐蚀热作模具钢H13后,可清晰的观测到模具钢H13发达的交叉树枝晶,而且可以测量二次枝晶间距。

    一种加压钢包精炼和加压电渣重熔双联冶炼高氮钢的方法

    公开(公告)号:CN112899438A

    公开(公告)日:2021-06-04

    申请号:CN202110055041.0

    申请日:2021-01-15

    申请人: 东北大学

    摘要: 本发明提供了一种加压钢包精炼和加压电渣重熔双联冶炼高氮钢的方法,属于高氮钢冶炼技术领域。本发明在加压钢包中对钢液依次进行氮合金化、深脱氧和深脱硫,同时在氮合金化过程中采用底吹氮气和加压下气相‑钢液界面渗氮相结合的方式实现高效氮合金化,使氮分布均匀,并利用镍镁合金和稀土降低钢液中的杂质含量;然后进行加压电渣重熔,进一步降低钢液中的夹杂物和杂质元素含量,改善钢的偏析,并使高氮钢组织均匀、致密。实施例的结果显示,本发明的高氮钢杂质含量低,成分均匀稳定,可以满足航空、航天、石油、化工、能源、海洋和生物工程等领域的使用要求。

    一种440C不锈轴承钢晶粒细化剂及其制备方法

    公开(公告)号:CN112853040A

    公开(公告)日:2021-05-28

    申请号:CN202011631096.3

    申请日:2020-12-31

    申请人: 东北大学

    摘要: 本发明涉及一种440C不锈轴承钢晶粒细化剂及其制备方法,440C不锈轴承钢晶粒细化剂包括Mg粉、Fe粉和纳米C粉,所述Fe粉、Mg粉和纳米C粉的质量比为93.9~94.1:4.9~5.1:0.9~1.1。本发明提供的440C不锈轴承钢晶粒细化剂通过其中的纳米C粉有效避免了压制后的细化剂中Mg的粘连,同时炼钢过程中纳米C粉与钢液中的氧反应生成的细小CO气泡可以使Mg颗粒迅速脱离块状细化剂,使镁均匀分布在钢液中。镁在钢液的凝固过程中会偏聚在晶界处,填补晶界表面缺陷,从而降低了两相界面上的表面张力,使得形核速度增大,同时降低了晶界能,减小晶粒长大的驱动力,限制了晶粒的长大,提高了440C不锈轴承钢的强度、韧性等性能。