一种悬臂梁式薄膜压力发电结构

    公开(公告)号:CN106966356A

    公开(公告)日:2017-07-21

    申请号:CN201710208013.1

    申请日:2017-03-31

    Applicant: 中北大学

    Abstract: 本发明属于微机电系统领域,具体为一种悬臂梁式薄膜压力发电结构,包括框型基底,框型基底开口正对的梁上设有悬空在框型基底内的硅悬臂梁,硅悬臂梁的自由端固定有质量块,框型基底开口正对的梁上方还设有二氧化硅绝缘层,二氧化硅绝缘层上设有底电极层,底电极层上朝框型基底开口侧延伸有位于硅悬臂梁上方的条状底电极层,质量块上设有PZT压电层,PZT压电层朝二氧化硅绝缘层方向延伸有位于条状底电极层上方的条状PZT压电层,条状PZT压电层上方设有顶电极层。当系统处于振动环境中时,外界环境中的振动能传递到系统内,引起硅悬臂梁振动并弯曲变形,使硅悬臂梁储存机械能,从而引起压电层的伸缩进而产生电信号,实现了机械能到电能的转换。

    金属微纳超结构表面等离激元超快探测结构

    公开(公告)号:CN106684199A

    公开(公告)日:2017-05-17

    申请号:CN201710075997.0

    申请日:2017-02-13

    Applicant: 中北大学

    Abstract: 本发明属于光学领域和微纳系统领域,具体为一种金属微纳超结构表面等离激元超快探测结构。金属微纳超结构表面等离激元超快探测结构,包括Si基底,Si基底上生长有一层二氧化硅,二氧化硅层上设有一层石墨烯薄膜,石墨烯薄膜上两侧分别都设有方块状金属Au块,两方块状金属Au块之间的石墨烯薄膜设有一层TiO,TiO层上均布有球状金属Ag,球状金属Ag上设有一层石墨烯薄膜覆盖层,球状金属Ag之间具有纳米级间隙,解决了石墨烯制作的光电探测器由于光生载流子较少使得灵敏度受限、传输速度较慢等问题。

    双路谐振式光学陀螺
    23.
    发明授权

    公开(公告)号:CN103968821B

    公开(公告)日:2017-03-08

    申请号:CN201410210762.4

    申请日:2014-05-19

    Applicant: 中北大学

    Abstract: 本发明涉及高精度的谐振式光学陀螺,具体为双路谐振式光学陀螺,包括第一环形器CIR1、第二耦合器C2、数据采集模块、第三耦合器C3和第二光电探测器PD2,第一环形器CIR1的第三端口通过光纤和第三耦合器C3的第一输入端连接,第二耦合器C2的第二输出端和第三耦合器C3的第二输入端连接,第三耦合器C3的输出端和第二光电探测器的输入端连接,第二光电探测器的输出端和数据采集模块的采集端口连接;本发明根据频差较小、速度相同的两列同向传播的简谐波叠加可形成拍现象的光学合成原理,提供了双路谐振式光学陀螺,该光学陀螺测频差方便、陀螺内包含的光电器件较少,测得的频差精确,不存在检测闭锁阈值区。

    端面耦合纳米光波导双光路芯片级原子钟

    公开(公告)号:CN106325049A

    公开(公告)日:2017-01-11

    申请号:CN201610980236.5

    申请日:2016-11-08

    Applicant: 中北大学

    CPC classification number: G04F5/14

    Abstract: 本发明公开了一种端面耦合纳米光波导双光路芯片级原子钟,包括激光器,所述激光器出射的光束通过端面耦合输入端耦合进入Y波导分束器,其中一束光经过相位调制单元后输出,另外一束光经调节补偿后输出,两路光束再分别经过垂直耦合光栅 和垂直耦合光栅 输出,依次经过偏振片、衰减片、波片、准直、聚焦之后进入气室,出射后,两束光经过探测单元转化为电信号后经过减法器输入集成电路芯片,所述集成电路芯片对激光器和相位调制单元进行调控。该方案通过双光路共模抑制可以大大减小光功率起伏和频率起伏噪声的影响,有效提高CPT原子钟的信噪比,从而可以大大提高芯片级原子钟的短期稳定度。

    三明治型金属超结构的红外辐射光源及制作方法

    公开(公告)号:CN106206867A

    公开(公告)日:2016-12-07

    申请号:CN201610576033.X

    申请日:2016-07-21

    Applicant: 中北大学

    Abstract: 本发明属于光学领域和微纳系统领域,具体为一种“三明治”型金属超结构的红外辐射光源及制作方法。一种“三明治”型金属超结构的红外辐射光源:包括ITO/IZO基片、在基片上沉积的孔洞阵列结构金属薄膜层、电介质层、以及在电介质层上制备的长方体状金属阵列结构。利用孔洞阵列结构光学异常透射增强效应和特定形貌微纳结构局域表面等离激元共振天线辐射增强效应耦合可以增强表面等离激元MEMS红外光源辐射,同时通过调整金属阵列和电介质层结构的几何参数可以实现对等离激元MEMS红外光源工作波段的调整和线宽的压窄。本发明中涉及的基于金属超表面的金属阵列结构具有很好的可扩展性,并且制作工艺简单、容易实现。

    双谐振腔谐振式光学陀螺
    26.
    发明授权

    公开(公告)号:CN103499344B

    公开(公告)日:2016-01-20

    申请号:CN201310306600.6

    申请日:2013-07-22

    Applicant: 中北大学

    Abstract: 本发明涉及高灵敏度谐振式光学陀螺,具体为一种双谐振腔谐振式光学陀螺,包括隔离准直芯片可调谐光源Laser、第一耦合器C1、多功能集成光学调制器、第三耦合器C3、第二耦合器C2、第四耦合器C4、主谐振腔、第一光电探测器PD1、第一锁相放大器LIA1、第二光电探测器PD2、第二锁相放大器LIA2,反馈控制电路FBC,还包括其内中心位置设有欧姆结的环状的辅谐振腔、温控模块和第五耦合器C5,主谐振腔上在和输入口相对的位置还设有输出口,第五耦合器C5的输入端和主谐振腔的输出口接触,第五耦合器C5的输出端和辅谐振腔的输入口接触,温控模块通过MEMS工艺制作的导线和欧姆结连接,解决了谐振式光学陀螺灵敏度不高的问题。

    基于PDMS的纳米级光栅制作方法

    公开(公告)号:CN102879845B

    公开(公告)日:2014-12-31

    申请号:CN201210381719.5

    申请日:2012-10-10

    Applicant: 中北大学

    Abstract: 本发明涉及光栅制作技术领域,具体为一种基于PDMS的纳米级光栅制作方法,解决了现有的纳米光栅制作方法所用设备昂贵、工艺条件苛刻复杂、难以控制、制作成本高、周期长的问题。一种基于PDMS的纳米级光栅制作方法,包括如下步骤:a、用光刻技术制作光栅母模版(5);b、将步骤a中的光栅母模版(5)的光栅图案转移到PDMS薄膜(6)上,制作带有光栅图案的PDMS薄膜(7);c、将带有光栅图案的PDMS薄膜(7)夹持在电控平移台上。本方法得到的纳米级光栅首先成型在PDMS薄膜上,而PDMS是一种很好的中间模具材料,对此PDMS薄膜再次倒模,便可以制作出其它多种材料的纳米级光栅。

    基于高Q光学微腔的温度传感器及分布式温度传感网络

    公开(公告)号:CN102435348B

    公开(公告)日:2014-01-08

    申请号:CN201110363600.0

    申请日:2011-11-17

    Applicant: 中北大学

    Abstract: 本发明基于高Q光学微腔的温度传感器及其分布式传感网络。传感器包括激光光源、分束器、参考微腔测试系统、探测器、以及参考微腔测试系统;所述的参考微腔系统由耦合器及光学微腔构成,其特点是该系统被低折射率封装起来,并通过温度控制单元实现了该系统的温度的恒定。所述的测试微腔由耦合器以及高Q光学微腔构成,其特点是该系统被低折射率封装起来。本发明提出的传感网络有两种并联和串联构建形式。本发明是利用光学微腔的高Q特性实现的温度的高分辨测试,具有结构简单,分辨率高、成本低等特点。

    掺铒环形微腔激光器
    29.
    发明授权

    公开(公告)号:CN101359804B

    公开(公告)日:2011-06-15

    申请号:CN200810079409.1

    申请日:2008-09-13

    Applicant: 中北大学

    Abstract: 本发明属于微型光电子技术器件制造领域,具体为一种掺铒环形微腔激光器。解决了平面环形微腔在激光器上的应用问题。其特征在于:制造方法为,(1)制作平面环形微腔和制作锥形光纤,微环的大小为外径120μm、内径100μm,锥形光纤的锥区直径为5μm,微环的厚度为2μm,(2)锥形光纤耦合:锥形光纤和硅微环腔的耦合距离为0.5μm形成掺铒环形微腔激光器。本发明制作成了微腔激光器,它实现了对光的控制。本发明低阈值的特性减小了对泵浦光的限制,实现了低功耗从而克服了功耗过大引起的硅环变形的缺陷。加工工艺比硅球微腔激光器的可控性要高很多,相比以前的微腔激光器可实施性大大提高。

    一种关于光学陀螺效应验证的简易结构

    公开(公告)号:CN101949712A

    公开(公告)日:2011-01-19

    申请号:CN201010274552.3

    申请日:2010-09-07

    Applicant: 中北大学

    Abstract: 本发明涉及陀螺惯性器件,具体是一种关于光学陀螺效应验证的简易结构。本发明解决了现有陀螺惯性器件测量不灵便、灵敏度和分辨率难以进一步提高、成本高、受温度等环境条件变化影响大、以及不易集成的问题。一种关于光学陀螺效应验证的简易结构包括中空转台、固定于中空转台表面圆心处的环形谐振腔、以及与环形谐振腔耦合的双波导;双波导贯穿中空转台表面,中空转台的上下两侧分别设有三通道光纤旋转互连装置和四通道光纤旋转互连装置。本发明有效解决了现有陀螺惯性器件测量不灵便、灵敏度和分辨率难以进一步提高、成本高、受温度等环境条件变化影响大、以及不易集成的问题,适于作为惯导系统中的核心部件。

Patent Agency Ranking