-
公开(公告)号:CN117079668A
公开(公告)日:2023-11-17
申请号:CN202310902397.2
申请日:2023-07-21
Applicant: 哈尔滨工程大学
IPC: G10L25/30 , G06F18/213 , G06N3/0464 , G06N3/08 , G10L25/51 , G10L25/24
Abstract: 本发明属于异常声音检测技术领域,具体涉及一种利用元数据分层信息约束自监督分类的异音检测方法。本发明使用元数据分层信息结构约束神经网络对训练音频的低维特征和高维特征的学习,充分利用伴随音频文件的元数据,挖掘元数据属性对声学特征的影响,以使神经网络能学习到域偏移在音频特征上引起的变化,进而提高工业异音检测系统在域偏移条件下的性能。同时,本发明提出了一种以属性组为中心的异常分数计算方法,用于在域偏移条件下评估测试样本的异常分数,以判断测试音频是否正常。与现有技术相比,本发明的方法能够更精细地学习到音频特征,减轻域偏移在异常声音检测中带来的问题。
-
公开(公告)号:CN112562706A
公开(公告)日:2021-03-26
申请号:CN202011376556.2
申请日:2020-11-30
Applicant: 哈尔滨工程大学
IPC: G10L21/02 , G10L21/0208 , G10L25/03
Abstract: 本发明提供一种基于时间潜在域特定说话人信息的目标语音提取方法,包括时间潜在域特征转换模型、目标说话人特征信息指导器与增强提取模块;待处理的复杂声学环境语音信息经过时间潜在域特征转换模型的处理将映射到潜在空间的特征矩阵,此特征矩阵将分别进入目标说话人特征信息指导器与增强提取模块;在目标说话人特征信息指导器中,特征矩阵将被判定为与某一特定的目标说话人潜在特征具有相关性,或者不包含目标说话人特征。本发明能实现从复杂声学环境语音信号到特定目标语音信号的端到端处理,能高效提取出针对特定任务的目标说话人信息,而不受其他干扰信号的影响,保障了模型传递给后续任务的特定目标语音信号具备极高的语音质量与可感知性。
-
公开(公告)号:CN118212937B
公开(公告)日:2025-04-08
申请号:CN202410306497.3
申请日:2024-03-18
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于特征融合和单分类的语音欺诈检测方法,所述方法包括如下步骤:S1:构建增强语音训练集;S2:提取待检测语音的Log‑Mel谱,利用TRawNet提取待检测语音的时域特征,将两个特征进行融合;S3:将融合后的特征送入图注意力网络中,对不同时域和频域上的信息进行建模,并用单分类损失函数训练整个网络。该方法使用基于图注意力网络的特征融合方法,将语音的时域特征和频域特征相结合,并对不同片段之间的关系进行了建模,提取出更有判别力的特征;提出的单分类损失函数在保留真实语音声学多样性的同时,解决了由信道效应带来的检测能力下降的问题,使模型的泛化能力进一步增强。
-
公开(公告)号:CN119339125A
公开(公告)日:2025-01-21
申请号:CN202411223253.5
申请日:2024-09-03
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/098 , G06F21/60
Abstract: 一种面向类别不平衡的联邦图像分类方法,它涉及一种联邦图像分类方法。本发明为了解决现有联邦学习方法主要关注数据异构性,无法降低类别不平衡对模型性能影响的问题。本发明具体包括服务器初始化全局高斯分布原型,客户端初始化本地模型参数;将所述全局高斯分布原型下发至客户端;客户端基于本地数据集,利用高斯原型生成类内方差信息,通过配置的损失函数进行本地模型训练;客户端通过随机采样生成平衡的虚拟特征集;客户端将更新后的本地原型上传至服务器;服务器对各客户端上传的本地原型进行聚合,生成新的全局高斯分布原型,并用于下一轮训练;判断是否达到设定的训练轮次或模型收敛。本发明属于图像分类技术领域。
-
公开(公告)号:CN113838107B
公开(公告)日:2023-12-22
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06T7/33 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/75 , G06V10/82 , G06N3/0464 , G06N3/044 , G06N3/0455 , G06N3/0475 , G06N3/094
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN114154538B
公开(公告)日:2022-09-02
申请号:CN202111421620.9
申请日:2021-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明属于工业声音异常检测技术领域,具体涉及一种基于相位编码和设备信息的工业声音异常检测系统。本发明能借助相位信息补足工业声音信号的精细度,获得高精度的声学特征,能够对高精度的声学特征进行建模,着重提升系统对于异常信息的敏感度,同时感知到不同工业设备之间的细微差异,规避了设备之间产生的声学干扰,并对建模结果进行高效率高精度的异常分数判定,具备优秀的工业声音异常检测性能。
-
公开(公告)号:CN113838107A
公开(公告)日:2021-12-24
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN103077366B
公开(公告)日:2015-05-27
申请号:CN201310020290.1
申请日:2013-01-19
Applicant: 哈尔滨工程大学
IPC: G06K7/00
Abstract: 本发明提供的是一种多通道数据接口射频识别装置及数据传输方法。包括射频模块、采集模块和电源。射频模块包含天线、射频前端、微控制器A、存储A和时钟A,采集模块包含存储B、微控制器B、时钟B、模数转换、模拟接口和数字接口。数据传输方法包括射频模块初始化,在定时发送周期内,读取指定通道数据,加载标签数据包并发送数据,若需要应答则等待接收应答数据,若接收到应答数据,判断是否有未发送数据与是否有时间重发,条件满足则发送暂存数据并重复执行相关程序;方法中还包括采集模块初始化,读取指定通道数据,暂存通道数据及重复执行。本发明有效解决了利用RFID对多个通道数据的采集与实时传输问题。
-
公开(公告)号:CN103024858A
公开(公告)日:2013-04-03
申请号:CN201310010943.8
申请日:2013-01-11
Applicant: 哈尔滨工程大学
IPC: H04W40/10
CPC classification number: Y02D70/00
Abstract: 本发明提供的是一种针对无线传感器网络的低功耗定向广播方法。包括如下步骤:第一步:初始化网络拓扑;第二步:划分扇形区域;第三步:确定传感半径;第四步:定向广播;第五步:路由发现。本发明将原有的路由协议中AODV查找路由的方式加入定向广播的思想,只针对部分在所规定扇形区域的节点的广播,对不在定向广播扇形的节点进行丢包处理,因此丢包处理的传感器节点的能量就可以存储,以待下次应用,通过仿真实验分析DB_AODV协议可以提高无线传感器网络的很多网络性能。
-
公开(公告)号:CN102684836A
公开(公告)日:2012-09-19
申请号:CN201210150038.8
申请日:2012-05-15
Applicant: 哈尔滨工程大学
IPC: H04L1/00
Abstract: 本发明提供的是一种基于网络编码的网络编码修复方法,其步骤是:第一步,解码失效节点向邻居节点请求重传所缺失的原始数据包;第二步,当邻居节点在接收到重传请求后根据自身缓冲队列中的原始数据包集合,发送自己的节点基本信息NFI给请求节点;第三步,解码节点在接收到邻居节点的NFI信息后通过CBCR算法计算得出所需的重传数据包集合并形成RACK请求包发送给邻居节点;第四步,邻居节点在接收到来自解码节点的RACK包后,根据RACK中的请求内容重传解码节点所需的数据包。本发明所提出的网络编码修复方法降低编码修复过程中的数据包重传的次数,提高了网络编码应用的有效性和可靠性。
-
-
-
-
-
-
-
-
-