可重复使用飞行器的异构陀螺选用方法及装置

    公开(公告)号:CN117131611B

    公开(公告)日:2024-01-19

    申请号:CN202311394790.1

    申请日:2023-10-26

    Abstract: 本发明涉及飞行器定位技术领域,特别涉及一种可重复使用飞行器的异构陀螺选用方法及装置。该方法包括:获取可重复使用飞行器的运行状态和异构陀螺的运动数据;其中,运行状态包括在轨飞行状态和非在轨飞行状态,异构陀螺包括至少两组光纤陀螺和至少一组激光陀螺,运动数据包括安装矩阵和角增量;基于运动数据,建立异构陀螺的平衡方程模型;基于平衡方程模型、正常光纤陀螺和星敏感器,对异构陀螺进行故障诊断,得到异构陀螺的故障状态;基于故障状态和运行状态,确定异构陀螺的选用方案。本方案能够根据需求在光纤和激光两种陀螺之间合理的切换,充分利用光纤和激光两类陀螺进行高效准确的故障诊断,保证了飞行器全周期陀螺的导航精度。

    姿控欠能力下的离轨制动控制方法、装置、设备及介质

    公开(公告)号:CN116902227A

    公开(公告)日:2023-10-20

    申请号:CN202311181141.3

    申请日:2023-09-14

    Abstract: 本发明涉及飞行器离轨制动技术领域,特别涉及一种姿控欠能力下的离轨制动控制方法、装置、设备及介质。方法包括:当飞行器处于姿控欠能力时,获取第一轨控发动机的开关机序列的开机占空比和单次开机时长;其中,第一轨控发动机为飞行器的两个轨控发动机中推力较大的轨控发动机,开机占空比为开关机序列的每一开关周期中开机时长占周期时长的比值;基于开关机序列的开机占空比和单次开机时长,使第一轨控发动机间歇开机进行离轨制动;直至满足预先设置的停止制动条件时,控制第一轨控发动机关机,完成飞行器的离轨制动。本方案可以通过使第一轨控发动机间歇开机,来实现姿控欠能力下的高精度离轨制动,保证飞行器到达再入点的精度。

    一种基于长短时间记忆网络的空间物理运动体建模方法

    公开(公告)号:CN111695195B

    公开(公告)日:2023-07-18

    申请号:CN202010413117.8

    申请日:2020-05-15

    Abstract: 本发明涉及一种基于长短时间记忆网络的空间物理运动体建模方法,涉及空间物理运动体建模技术领域;包括如下步骤:步骤一、建立第一全连接神经网络;步骤二、建立第二全连接神经网络;步骤三、建立第三全连接神经网络;步骤四、建立第一长短时间记忆网络和第二长短时间记忆网络;步骤五、根据步骤一至步骤四建立动力学模型网络;步骤六、根据状态量St和控制量Ct对步骤五中的动力学模型网络进行网络训练;步骤七、步骤七、重复步骤六,直至动力学模型网络收敛,完成对动力学模型网络修正;本发明采用离线训练和在线微调相结合的训练策略,实现弹道和飞行状态的在线预测,从而为后续高精度制导和高稳定控制提供依据。

    轨控发动机推力矢量的估计方法、装置、设备及介质

    公开(公告)号:CN117184455B

    公开(公告)日:2024-01-12

    申请号:CN202311476691.8

    申请日:2023-11-08

    Abstract: 本发明涉及航空航天技术领域,特别涉及一种轨控发动机推力矢量的估计方法、装置、设备及介质。包括:确定轨控发动机干扰力矩的包络和轨控发动机开机后贮箱的液体能够建立稳定晃动状态的时间,以基于包络、能够建立稳定晃动状态的时间和姿控发动机的控制能力,确定在不引入姿控发动机的控制下能够保证安全性的轨控发动机的开机时长;基于开机时长,从轨控发动机的开机期间确定用于评估推力矢量的有效时间段;获取预先确定的估计模型,以利用陀螺和加速度测量计在有效时间段内的测量数据以及估计模型,估计轨控发动机的推力矢量。本方案可以提高轨控发动机的推力矢量的估计准确性,进而可以提高轨控精度。

    回归轨道自主调相控制方法及装置

    公开(公告)号:CN117302559A

    公开(公告)日:2023-12-29

    申请号:CN202311430835.6

    申请日:2023-10-31

    Abstract: 本发明提供了一种回归轨道自主调相控制方法及装置,涉及航天器控制技术领域,其中方法包括:根据轨道回归特性获取目标回归轨道的N个升交点的理想地理经度;实时监测航天器每一圈飞行过程中经过升交点时的实际地理经度,每当监测到经过升交点的实际地理经度时,确定该圈升交点的地理经度误差;根据该地理经度误差与误差阈值的大小关系,确定是否需要进行调相任务;在确定需要进行调相任务时,计算用于执行调相任务的轨控脉冲,并利用轨控脉冲执行调相任务,以使航天器的轨道形态恢复至目标回归轨道的轨道形态。本方案,能够对飞行轨道的回归特性进行定期维持,以保证飞行轨迹可以定期满足再入走廊的约束。

    航天器自主闭环轨控方法及装置

    公开(公告)号:CN117087875B

    公开(公告)日:2023-12-29

    申请号:CN202311359312.7

    申请日:2023-10-20

    Abstract: 本发明提供了一种航天器自主闭环轨控方法及装置,涉及航天器控制领域,方法包括:在接收到自主轨控指令时,根据目标轨道根数和当前轨道根数确定首脉冲轨控后过渡轨道的相关参数,并通过过渡轨道相关参数规划双脉冲的点火位置和轨控速度增量,在执行首脉冲时采用闭环执行方式,根据实时计算确定过渡轨道到位时将轨控发动机关机以完成首脉冲,在执行次脉冲时依然采用闭环执行方式,根据实时计算确定目标轨道到位时将轨控发动机关机以完成次脉冲。本方案,能够根据实时的自主定轨结果判断的轨道到位情况来确定轨控发动机的关机节点,从而可以使得轨控结果具有极高的精度。

    姿轨耦合发动机多自由度指令分配方法和装置

    公开(公告)号:CN117193024A

    公开(公告)日:2023-12-08

    申请号:CN202311443189.7

    申请日:2023-11-02

    Abstract: 本发明涉及航空航天技术领域,特别涉及一种姿轨耦合发动机多自由度指令分配方法和装置。包括:确定耦合发动机组和耦合自由度;计算耦合发动机组的分配阵和在各耦合自由度的最大控制能力;针对每一个控制周期,均执行:基于耦合发动机组在各耦合自由度的最大控制能力,对获取的当前控制周期的目标位置控制量和目标姿态控制量进行限幅,以确定待分配的冲量和冲量矩;基于待分配的冲量和冲量矩、分配阵以及耦合发动机组的开机时长的零空间解,确定耦合发动机组的开机时长矩阵,将耦合发动机组和解耦发动机组的开机时长矩阵进行同比缩放,得到每一个发动机的最终开机时长。本方案可以使燃料消耗最少、可以解决发动机单向性问题且计算量较小。

    轨控发动机干扰力矩的估计方法、装置、设备及介质

    公开(公告)号:CN117184456A

    公开(公告)日:2023-12-08

    申请号:CN202311476692.2

    申请日:2023-11-08

    Abstract: 本发明涉及航空航天技术领域,特别涉及一种轨控发动机干扰力矩的估计方法、装置、设备及介质。包括:确定轨控发动机干扰力矩的包络和轨控发动机开机后贮箱的液体能够建立稳定晃动状态的时间,以基于包络、能够建立稳定晃动状态的时间和姿控发动机的控制能力,确定在不引入姿控发动机的控制下能够保证安全性的轨控发动机的开机时长;基于开机时长,从轨控发动机的开机期间确定用于评估干扰力矩的有效时间段;获取预先确定的干扰估计模型,以利用干扰估计模型和陀螺在有效时间段内的测量数据,估计轨控发动机的干扰力矩。本方案可以避免引入姿态发动机偏差,可以提高轨控发动机干扰力矩的估计准确性,进而可以提高轨控过程姿态控制系统的可靠性。

    剔野阈值确定方法、装置、电子设备及存储介质

    公开(公告)号:CN117130024A

    公开(公告)日:2023-11-28

    申请号:CN202311392813.5

    申请日:2023-10-25

    Abstract: 本发明提供了一种剔野阈值确定方法、装置、电子设备及存储介质,涉及航天器控制技术领域,其中方法包括:确定跨空域飞行期间飞行器的GNSS导航是否从失效状态切换为有效状态;若是,则确定最近一次GNSS导航失效时对应的失效时长,并根据该失效时长确定GNSS导航当前有效阶段内的剔野阈值;其中,该剔野阈值与该失效时长成正相关关系。本方案,能够动态调整GNSS导航的测量值有效性的判断门限,保证导航系统对GNSS导航的测量值尽可能不误判、对野值不漏判,提高了导航系统的可靠性。

    一种高超声速飞行器上升段分段自适应预测校正制导方法

    公开(公告)号:CN111580555B

    公开(公告)日:2022-04-08

    申请号:CN202010404180.5

    申请日:2020-05-13

    Abstract: 一种高超声速飞行器上升段分段自适应预测校正制导方法,将上升段分为上升段初期、上升段后期;包括如下步骤:S1、建立上升段无量纲的动力学方程;S2、根据上升段无量纲的动力学方程,获得无量纲后的上升段终端弹道倾角时变动态增益曲线、无量纲后的上升段终端高度时变动态增益曲线;S3、在上升段初期,以减小上升段终端高度误差为制导目标,利用上升段终端高度时变动态增益曲线,获得上升段初期的攻角修正量,对上升段初期的攻角进行修正;S4、在上升段后期,以减小上升段终端弹道倾角误差为制导目标,利用上升段终端弹道倾角时变动态增益曲线,获得上升段后期的攻角修正量,对上升段后期的攻角进行修正。

Patent Agency Ranking