-
公开(公告)号:CN113138342A
公开(公告)日:2021-07-20
申请号:CN202110304715.6
申请日:2021-03-17
申请人: 江苏大学
IPC分类号: G01R31/367 , G01R31/378
摘要: 本发明提供一种基于滚动时域估计的SOC在线估算方法及系统,包括以下步骤:确定被估算对象锂离子电池的OCV‑SOC关系;建立气液动力学锂离子电池模型;建立气液动力学模型,使用气液动力学模型模拟气液动力学锂离子电池解析模型,通过气液动力学锂离子电池解析模型计算得到电池端电压值的估算值;建立基于安时积分法的电池SOC估算方程,得到当前实时电池SOC先验估计值;利用滚动时域估计算法对SOC先验估计值进行优化,得到SOC最优估算值。本发明用于提高SOC估算精度并消除原始模型在局部估算精度丢失的问题。
-
公开(公告)号:CN111693877A
公开(公告)日:2020-09-22
申请号:CN202010410740.8
申请日:2020-05-15
申请人: 江苏大学
IPC分类号: G01R31/388 , G01R31/367
摘要: 本发明提供一种锂离子电池的SOC在线估测方法和系统,包括以下步骤:确定电池SOC-OCV关系;建立双温度气液动力学电池解析模型:建立双温度气液动力学模型,使用双温度气液动力学模型模拟双温度气液动力学电池解析模型,通过双温度气液动力学电池解析模型计算得到电池端电压值的估算值;通过安时积分法获得当前实时电池SOC先验估计值;利用卡尔曼滤波算法获得SOC最优估算值:将所述电池端电压值的估算值与采集的端电压作差,获得误差值,通过误差值和卡尔曼增益,修正所述SOC先验估计值,获得SOC最优估算值,提高SOC估算精度。
-
公开(公告)号:CN111244569A
公开(公告)日:2020-06-05
申请号:CN202010036031.8
申请日:2020-01-14
申请人: 江苏大学
IPC分类号: H01M10/613 , H01M10/42 , H01M10/625 , H01M10/633 , H01M10/635 , H01M10/6551 , H01M10/6557 , H01M10/6563 , H01M10/6568
摘要: 本发明提供了一种风冷和液冷相结合的电池散热装置及方法,属于汽车电池热管理技术领域;整个散热装置主要通过在电池模组外围设置双向型环绕液冷管,以及在电池箱体底部设置冷却风扇,将风冷和液冷结合,对电池模组进行散热;同时还利用BMS控制冷却风扇驱动电机和电子水泵,可以根据实时检测的电池模组温度选择不同的散热形式,而且还能实现根据温度实时控制冷却风扇转速和冷却液进口流量,节约能源,高效散热;散热装置还设置有风摆和排风扇进行辅助散热,进一步提高散热效果。
-
公开(公告)号:CN108448071B
公开(公告)日:2020-05-05
申请号:CN201810064641.1
申请日:2018-01-23
申请人: 江苏大学
IPC分类号: H01M4/36
摘要: 本发明提供了一种原位合成多孔纳米四氧化三钴/碳负极材料的方法,属于电化学领域。具体步骤为:采用溶剂热合成一种棒状多孔钴基金属有机框架;经洗涤、浸泡,真空干燥后得到前驱体,将此前驱体后放入惰性/氧混合气氛的管式炉中于高温碳化分解,得到具有多级多孔纳微米棒状结构Co3O4/C负极材料;本发明以具有周期性网络晶体结构的多孔、大比表面积钴基金属有机框架为自模板式前驱体,采用原位热分解的方法获取多级多孔纳微米棒状结构Co3O4/C锂离子电池负极材料,不仅过程简单,而且所得产物电导率高、比容量高、循环稳定性良好。
-
公开(公告)号:CN109884528B
公开(公告)日:2020-03-31
申请号:CN201910137591.X
申请日:2019-02-25
申请人: 江苏大学
IPC分类号: G01R31/367 , G01R31/374
摘要: 本发明提供一种带温度输入的锂离子电池开路电压估算方法及系统,包括步骤一,依据气液动力学模型推导带温度输入的待定开路电压估算方程;步骤二,依据实验数据辨识估算方程参数,代入步骤一的待定开路电压估算方程得到完备的开路电压估算方程;步骤三,依据完备的开路电压估算方程设计带温度输入开路电压估算方法。本发明气液动力学模型状态方程包含温度对电池开路电压的影响,无需引入温度补偿系数和经验公式;参数识别所需实验数据少,易于辨识模型参数;模型中输入前一时刻与当前时刻采样温度,在电池开路电压估算过程中反映更多温度信息;估算开路电压的方程通过自身迭代能够消除采样误差,不依赖于初值,估算精度高。
-
公开(公告)号:CN110518238A
公开(公告)日:2019-11-29
申请号:CN201910795917.8
申请日:2019-08-27
申请人: 江苏大学
IPC分类号: H01M4/58 , H01M4/485 , H01M10/054 , H01M4/36 , H01M4/62
摘要: 本发明提供了一种基于有机膦酸合成钠离子电池正极材料Na3V2(PO4)3/氮掺杂碳及制备方法,首先将有机膦酸和钠源加适量去离子水搅拌溶解,得到澄清溶液A,将钒源溶解,得到澄清溶液B;将B溶液加入到上述A溶液中形成混合溶液C;在80℃~100℃下将C混合溶液加热搅拌至水分蒸干,将所得到的凝胶状物质放入烘箱中80℃~100℃下干燥5~12h;将所得固体研磨,在氩气保护下二次烧结得到产物。其中有机膦酸具有多重功能,即既充当的Na3V2(PO4)3中膦酸根的来源,又充当了氮源和碳源。相比于现有方法,本发明方法简单、易于控制、成本低,制备Na3V2(PO4)3/氮掺杂碳具有高的比容量、良好的循环稳定性和倍率性能。
-
公开(公告)号:CN110045286A
公开(公告)日:2019-07-23
申请号:CN201910217008.6
申请日:2019-03-21
申请人: 江苏大学
IPC分类号: G01R31/367 , G06F17/10
摘要: 本发明提供一种基于气液动力学模型的电池开路电压估算方法及装置,包括步骤一依据气液动力学模型推导出待定的开路电压估算方程,步骤二依据实验数据辨识估算方程参数;步骤三,依据完备的开路电压估算方程设计开路电压估算方法,并计算得到开路电压估算值。本发明中的开路电压估算方程包含电池温度,无需再与电池温度耦合,简化开路电压估算过程;估算方程中气体溶解/析出原理等效于电池极化效应,更好地拟合开路电压滞后电池端电压现象;估算方程的估算结果不依赖于输入初值的精度,具有极好的估算鲁棒性;能够更准确地刻画电池充放电非线性过程、解析式简单、参数辨识容易、运算量小,且反映电池温度特性对开路电压的影响,便于在工程中实现。
-
公开(公告)号:CN109950663A
公开(公告)日:2019-06-28
申请号:CN201910131758.1
申请日:2019-02-22
申请人: 江苏大学
IPC分类号: H01M10/617 , H01M10/613 , H01M10/615 , H01M10/625 , H01M10/635 , H01M10/6571 , H01M10/653 , H01M10/6556
摘要: 本发明提供一种电池模组热管理装置及其方法,包括多个导流板、驱动机构、温度传感器和控制器,导流板分别位于单体电池的底部和侧面;驱动机构与导流板连接,驱动导流板与单体电池底部和/或侧面的贴合或分离;温度传感器用于采集每个单体电池底部和侧面的温度信号;控制器分别与温度传感器和驱动机构连接;温度传感器采集的温度信号传递给控制器,控制器根据温度信号控制驱动机构使导流板与单体电池底部和/或侧面贴合或分离。解决了电池模组内部单体电池各个位置温度不均衡性,保证了单体电池的温度一致性,且结构简单,易于实现。
-
公开(公告)号:CN105514390B
公开(公告)日:2019-03-05
申请号:CN201610043810.4
申请日:2016-01-22
申请人: 江苏大学
IPC分类号: H01M4/36 , H01M4/50 , H01M4/52 , H01M4/62 , H01M10/0525
摘要: 本发明涉及一种纳米片状多孔过渡金属氧化物/碳复合材料及其制备方法,属于电化学材料领域;本发明首先将过渡金属盐盐直接溶解于高压反应釜中的乙二醇,100~180℃水热反应2~5h,生成过渡金属配位聚合物前驱体,经洗涤、干燥后放入惰性气氛的管式炉中于450~600℃分解0.5~6h,即生成一种含纳米片状多孔过渡金属氧化物/碳复合材料;通过本发明所述的方法制得的材料电导率高,且具有高的比容量、良好的循环稳定性、优异的大倍率放电性能及高的能量密度;本发明的制备方法不仅过程简单,制备成本低廉,合成的复合材料可以有效改善其电化学性能,具有较高的首次可逆比容量和优异的循环性能,能够应用于二次锂离子电池。
-
公开(公告)号:CN108493439A
公开(公告)日:2018-09-04
申请号:CN201810064055.7
申请日:2018-01-23
申请人: 江苏大学
IPC分类号: H01M4/485 , H01M4/505 , H01M10/0525 , H01M4/66 , H01M4/04
摘要: 本发明提供了一种正极富锂材料及其复合物扣式及软包全电池的制作方法,属于锂离子电池技术领域;包括以下步骤:正极极片浆料制备、负极极片浆料的制备、正负极极片制作、扣式全电池制作和软包电池的制作;其中涉及正负极片材料成分配比和负极预锂化的两种方法;本发明新型正极富锂材料及其复合物的扣式及软包全电池的表现出非常高的库伦效率、大的充放电容量和良好的循环寿命等优异的电化学性能,有利于富锂正极材料的实用化与商业化。
-
-
-
-
-
-
-
-
-