-
公开(公告)号:CN109189075B
公开(公告)日:2021-05-11
申请号:CN201811169436.8
申请日:2018-10-08
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种舰船用模糊遗忘因子无模型自适应航向控制方法,建立航向系统模型,下达期望航向指令y(k)*,设定航向偏差的阈值e0,根据舰船期望航向y*(k),与舰船当前航向y(k),计算航向偏差e(k)和偏差变化率ec(k),当e(k)的绝对值|e(k)|小于航向偏差的阈值e0,跳出循环,否则继续执行,模糊遗忘因子MFAC控制器根据e(k)、ec(k)在线调整遗忘因子β并解算出航向系统的期望输入u(k),系统接收并执行航向系统输入指令u(k),令k=k+1,更新舰船当前航向y(k)。本发明解决了MFAC控制算法产生积分饱和问题,提高了系统响应速度以及控制精度,提高了控制系统的自适应性以及鲁棒性。
-
公开(公告)号:CN112572718A
公开(公告)日:2021-03-30
申请号:CN202011343769.5
申请日:2020-11-25
Applicant: 哈尔滨工程大学
IPC: B63B71/00
Abstract: 本发明属于仿生流体力学技术领域,具体涉及一种仿生柔性鳍水动力性能测量实验装置及方法。本发明可以通过调节仿生柔性鳍的运动频率、水槽中水流的大小和齿轮组的初始相位差,测量柔性鳍在不同斯托罗哈数、雷诺数下的推力、运动模式下的水动力性能。本发明中仿生柔性鳍两侧弦长中间位置设有颜料释放口,分别储存两种颜色的颜料,在仿生柔性鳍运动时,颜料会向水中扩散,实现仿生柔性鳍周围流场的可视化;消波板能减少自由液面对于柔性鳍尾流中涡系的干扰,保证测量结果的准确性。本发明采用小型步进电机和齿轮组带动柔性鳍运动,六分力天平进行测量,鳍表面播撒颜料的方案,结构简单,易于测量仿生柔性鳍的水动力性能并可视化周围流场。
-
公开(公告)号:CN111709086A
公开(公告)日:2020-09-25
申请号:CN202010520110.6
申请日:2020-06-09
Applicant: 哈尔滨工程大学
IPC: G06F30/15 , G06T17/20 , G06F111/04
Abstract: 一种面向滑行艇的参数化建模方法,它涉及一种参数化建模方法,具体涉及一种面向滑行艇的参数化建模方法。本发明的目的是为了通过修改滑行艇的型值参数能够快速自动生成任意尺度比的滑行艇艇型,同时获得具有较好光顺性的滑行艇完整曲面。本发明的具体步骤为:第一步建立滑行艇的参数化模型,第二步基于均匀B样条曲线和型线约束条件对滑行艇的关键型线2D投影进行定义,第三步是获得型值点并利用贝塞尔曲线插值得到滑行艇的3D型线,第四步是利用均匀B样条曲线在3D型线间插入外凸型或内凹型曲线,第五步是定义滑行艇的各站面,第六步建立滑行艇各型线间的放样曲面。本发明属于计算机图形学技术领域。
-
公开(公告)号:CN110356513A
公开(公告)日:2019-10-22
申请号:CN201910673656.2
申请日:2019-07-24
Applicant: 哈尔滨工程大学
Abstract: 一种无人艇用辅助声呐释放和收回机构,它涉及航海通信技术领域。本发明解决了现有的无人艇用辅助声呐释放和收回机构存在结构过于复杂、声呐储存仓的空间有效利用率低、释放和收回位置不可控、结构稳定性差和结构刚度低的问题。本发明的回转铰链组件设置在艇艏甲板上部,主传动机构组件通过主轴与回转铰链组件连接,主传动机构组件下部与支撑组件连接,支撑组件安装在甲板连接板上,防水电缸组件位于副传动机构组件侧部,防水电缸组件与同步带箱上部连接,同步带箱下部通过方形连接法兰与回转铰链组件连接,电缸组件的头部与声呐组件连接,电缸组件通过同步带箱与副传动机构组件连接。本发明节约了无人艇内部仓储空间,具备很高的空间利用率。
-
公开(公告)号:CN110040230A
公开(公告)日:2019-07-23
申请号:CN201910342812.7
申请日:2019-04-26
Applicant: 哈尔滨工程大学
Abstract: 本发明公开一种将波浪能转换成低频纵摇运动实现推进的海洋运载器,涉及海洋运载器技术领域,包括波能吸收装置、波能储备装置、波能转换水翼以及设备舱,波能吸收装置和波能储备装置均设置于设备舱的上方并分别与设备舱的舱艏和舱艉固定连接,波能转换水翼设置于设备舱的下方并与设备舱的舱艉固定连接,波能吸收装置用于吸收波浪能,波能储备装置用于储备波能吸收装置吸收的波浪能,波能转换水翼用于将波能储备装置储备的波浪能和波能吸收装置吸收的波浪能转换为航行动力,设备舱用于装载海洋监测工具,该海洋运载器利用波浪能作为航行动力,动力能源不受限制,能够实现大范围、长航程和恶劣海况下持续不间断航行。
-
公开(公告)号:CN109782773A
公开(公告)日:2019-05-21
申请号:CN201910186081.1
申请日:2019-03-12
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提出了一种操纵响应方程参数向量并行估计方法,属于操纵性模型参数估计技术领域,适用于舰船或波浪滑翔器。该方法首先设置参数向量P与状态向量Y,且满足PTY=r,r为转艏角速度;之后设置准则函数为当前时刻P的估算值,为上一时刻P的估计值,μ为权重系数;然后对准则函数J关于求极小值,加入步长因子λ,递推修正 λ为步长因子;最后不断重复上一步骤,直至收到估计过程结束指令。本发明提出的适用于舰船及波浪滑翔器的一种操纵响应方程参数向量并行估计方法,能够在舰船航行过程中实时修正参数向量,获取实时变化的舰船或波浪滑翔器的操纵性参数,相比已有技术在快速性、便利性等方面具有显著优势,具有较好的发展前景。
-
公开(公告)号:CN108809406A
公开(公告)日:2018-11-13
申请号:CN201810589262.4
申请日:2018-06-08
Applicant: 哈尔滨工程大学
CPC classification number: H04B7/1851 , H04B7/18513 , H04B7/18519 , H04L67/12
Abstract: 本发明属于无人船控制技术领域,公开了一种无人船的智能认知信息远程交互系统,解决了目前无人船与操作人员之间进行远程通信存在的数据通信量大、时效性差、运行范围受限、需频繁干预的问题,包括船载智能认知与通信系统,远程交互控制中心,通信卫星,第一卫星数据通信链路,第二卫星数据通信链路和微波或超短波数据通信链路;第一卫星数据通信链路连接通信卫星与船载智能认知与通信系统,第二卫星数据通信链路连接通信卫星与远程交互控制中心,微波或超短波数据通信链路连接船载智能认知与通信系统与远程交互控制中心。本发明保证无人船的监测和干预控制具有时效性,实现全球覆盖,具有较高的智能化水平,降低了操作人员对无人船干预的频率。
-
公开(公告)号:CN108163172A
公开(公告)日:2018-06-15
申请号:CN201810057281.2
申请日:2018-01-22
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种水田无人风动艇,属于无人艇领域,包括主船体系统、动力系统和转向系统,主船体系统中的主船体为整个艇提供浮力,动力系统主要包括发动机和空气桨,发动机通过驱动空气桨的转动为整个艇提供动力,转向系统主要包括舵机、两个翼板和连杆机构,舵机通过连杆机构实现两个翼板的同时转动,进而实现艇的转向。与现有技术相比,本发明提供的水田无人风动艇吃水小,能够适用于浅水区域;采用空气桨作为推进装置,避免了传统螺旋桨推进时对水稻秧苗的破坏,也避免了传统喷水推进器在障碍物复杂的水域无法正常工作的弊端;巧妙设计的连杆机构,通过舵机的驱动,实现两块翼板的以相同的旋转角速度同时转动和停止。
-
公开(公告)号:CN107672737A
公开(公告)日:2018-02-09
申请号:CN201710815626.1
申请日:2017-09-08
Applicant: 哈尔滨工程大学
Abstract: 本发明属于高性能船舶设计和船舶运动姿态控制领域,尤其涉及一种兼顾快速性与耐波性的可变形滑行艇,解决了现有技术不能同时兼顾高速和高耐波性的问题,包括主船体,第一附体,第二附体,倒U型滑动轨道,球鼻艏和固定水翼。倒U型滑动轨道包括垂向导轨和横向导轨。横向导轨的末端连接垂向导轨,垂向导轨和横向导轨相互垂直。第一附体与第二附体和垂向导轨靠近水面的一端相连,分别位于主船体的两侧。球鼻艏安装在主船体的船艏底部,固定水翼对称地安装在球鼻艏的两侧。本发明使滑行艇通过改变艇体形态以适应不同等级的海况,在不大量损失快速性的条件下获得良好的耐波性,大大增强了滑行艇的适用范围与在恶劣海况下执行任务的能力。
-
公开(公告)号:CN104890814B
公开(公告)日:2017-07-11
申请号:CN201510312715.5
申请日:2015-06-09
Applicant: 哈尔滨工程大学
IPC: B63B15/02
Abstract: 本发明提供一种具有独立逃生舱室模块的快艇,本发明通过可独立逃生的舱室模块及其他辅助设备实现安全逃生功能,可逃生的独立舱室模块采用仿胶囊式设计,是一个可独立于主船体的、可封闭的舱室,且直接坐在底部减振装置上,减振装置一般可采用气囊或弹簧,在独立舱室模块外壁两侧,通过钢丝绳穿过固定于独立舱室模块舱壁外的爆炸螺栓及艇体内壁上的金属猫爪,将独立舱室模块与艇体连接,顶部舱盖与独立舱室模块作为一个整体,可形成密闭空间,当快艇遭遇恶劣海况受损严重有淹没危险时,通过遥控爆炸螺栓,断开艇体与独立舱室模块之间的连接,切断独立舱室模块电力供应,使得独立舱室模块与艇体脱离,确保独立舱室模块内的人员安全逃生。
-
-
-
-
-
-
-
-
-