-
公开(公告)号:CN117792005B
公开(公告)日:2024-06-04
申请号:CN202311837698.8
申请日:2023-12-28
Applicant: 哈尔滨工业大学
IPC: H02K41/03 , H02K41/035 , H02K11/20 , H02K11/22 , H02K7/00 , H02P25/06 , H02P25/08 , H02P25/034 , H02P7/025 , H02P23/00 , H02P5/00
Abstract: 一种直线磁阻电机的高精度力测量装置及控制方法,属于高端装备技术领域。测量装置包括磁阻电机、音圈电机和运动平台,直线磁阻电机包括E型组件、I型组件和电机底座;运动平台包括运动平台底座、导套、导轨、台体及光栅尺;E型组件固定装在电机底座上,运动平台底座、导套和音圈电机定子均固定于运动平台底座上,导轨滑动穿出导套,导套设置在台体内,台体固定在导轨上;导轨两端分别与I型组件的I型电磁铁及音圈电机动子连接,I型电磁铁与E型组件的双极电磁铁之间设有磁铁间隙,光栅尺安装于导轨位于音圈电机这一端的底部。控制方法包含磁阻电机的磁通控制回路和音圈电机的位置控制回路。本发明能够实现直线磁阻电机的高精度力测量。
-
公开(公告)号:CN117850316A
公开(公告)日:2024-04-09
申请号:CN202410024802.X
申请日:2024-01-08
Applicant: 哈尔滨工业大学
IPC: G05B19/042
Abstract: 一种多自由度冗余驱动运动台的柔性模态抑制方法,属于半导体制造装备及运动台振动抑制领域。方法步骤是:步骤一:建立运动台基于模态特性且包含时延的数学模型;步骤二:分解动态输入解耦矩阵,使其包含一个动态参数矩阵,实现刚性模态独立控制,仅针对柔性模态抑制需求对动态参数矩阵设计;步骤三:基于全通滤波的方法,将动态参数矩阵表示为两个全通滤波器的线性组合;步骤四:以满足每个柔性模态谐振频率点的零增益为优化目标,建立优化方程和约束条件,利用启发式智能优化算法对全通滤波器参数进行优化;步骤五:得到满足柔性模态抑制需求的动态输入解耦矩阵。本发明能够实现在有限执行器冗余度条件下对全频段所有可控柔性模态的高性能抑制。
-
公开(公告)号:CN117792005A
公开(公告)日:2024-03-29
申请号:CN202311837698.8
申请日:2023-12-28
Applicant: 哈尔滨工业大学
IPC: H02K41/03 , H02K41/035 , H02K11/20 , H02K11/22 , H02K7/00 , H02P25/06 , H02P25/08 , H02P25/034 , H02P7/025 , H02P23/00 , H02P5/00
Abstract: 一种直线磁阻电机的高精度力测量装置及控制方法,属于高端装备技术领域。测量装置包括磁阻电机、音圈电机和运动平台,直线磁阻电机包括E型组件、I型组件和电机底座;运动平台包括运动平台底座、导套、导轨、台体及光栅尺;E型组件固定装在电机底座上,运动平台底座、导套和音圈电机定子均固定于运动平台底座上,导轨滑动穿出导套,导套设置在台体内,台体固定在导轨上;导轨两端分别与I型组件的I型电磁铁及音圈电机动子连接,I型电磁铁与E型组件的双极电磁铁之间设有磁铁间隙,光栅尺安装于导轨位于音圈电机这一端的底部。控制方法包含磁阻电机的磁通控制回路和音圈电机的位置控制回路。本发明能够实现直线磁阻电机的高精度力测量。
-
公开(公告)号:CN116774585A
公开(公告)日:2023-09-19
申请号:CN202310751744.6
申请日:2023-06-25
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种纳米精度运动台学习控制系统及方法,涉及一种运动台控制系统及方法。闭环反馈部分包括运动轨迹生成器、反馈控制器、运动台及傅里叶变换器一,前馈部分包括傅里叶变换器二、学习控制器、迭代后移算子及傅里叶逆变换器。迭代实验次数j赋初值为j=1,第j次频域前馈信号赋初值为0;运行系统采集频域误差信号和频域位置测量信号;更新第j+1次频域前馈信号;迭代实验次数j值加1,跳转至步骤二。能够有效抑制外部噪声和扰动的影响,提高收敛性能,而且计算量较少,学习增益确定简单,鲁棒性强,便于工程应用。
-
公开(公告)号:CN116151009B
公开(公告)日:2023-07-18
申请号:CN202310170473.5
申请日:2023-02-27
Applicant: 哈尔滨工业大学
Abstract: 一种面向超精密运动系统的频响辨识方法,属于超精密运动辨识领域。方法是:利用轨迹生成器,生成运动台的期望运动轨迹;利用激励信号生成器,生成激励信号;激励信号与运动台闭环系统的反馈控制器的输出相加所得结果作为运动台的输入,运动台的闭环系统根据运动台的期望运动轨迹减去运动台的实际运动轨迹,得到运动台的伺服误差,伺服误差信号经过反馈控制器得到反馈控制器的输出;频响估计器的输入为运动台的输入与运动台的输出,输出为频响估计器计算所得频响,离散傅里叶变换器对收集的运动台的输入信号与运动台的输出信号分别进行离散傅里叶变换;利用频响估计器进行频响辨识。本发明用于超精密运动系统的频响辨识。
-
公开(公告)号:CN116151009A
公开(公告)日:2023-05-23
申请号:CN202310170473.5
申请日:2023-02-27
Applicant: 哈尔滨工业大学
Abstract: 一种面向超精密运动系统的频响辨识方法,属于超精密运动辨识领域。方法是:利用轨迹生成器,生成运动台的期望运动轨迹;利用激励信号生成器,生成激励信号;激励信号与运动台闭环系统的反馈控制器的输出相加所得结果作为运动台的输入,运动台的闭环系统根据运动台的期望运动轨迹减去运动台的实际运动轨迹,得到运动台的伺服误差,伺服误差信号经过反馈控制器得到反馈控制器的输出;频响估计器的输入为运动台的输入与运动台的输出,输出为频响估计器计算所得频响,离散傅里叶变换器对收集的运动台的输入信号与运动台的输出信号分别进行离散傅里叶变换;利用频响估计器进行频响辨识。本发明用于超精密运动系统的频响辨识。
-
公开(公告)号:CN114265314B
公开(公告)日:2022-06-24
申请号:CN202111592558.X
申请日:2021-12-23
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种基于FIR滤波的鲁棒逆模型学习增益设计方法,属于超精密运动控制领域。鲁棒逆模型迭代学习控制的目标是,通过伺服误差学习不断提升运动系统的伺服精度,其学习增益由闭环系统标称模型的逆低通滤波器H(z)和时间超前环节zτ三部分串联组成;所述方法采用具有线性相移特性的FIR低通滤波器替代现有技术中的传统低通滤波器,并通过补偿FIR低通滤波器的线性相移实现零相位滤波。本发明公开方法中FIR低通滤波器通过设计可以直接实现规定的阻带起始频率和阻带衰减,时间超前补偿数量可以直接通过计算得到,并可在更大频率范围实现零相位滤波,克服了参数整定的盲目性,可有效保证实际应用中达到预期补偿效果。
-
公开(公告)号:CN113415811B
公开(公告)日:2022-03-25
申请号:CN202110551822.9
申请日:2021-05-20
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种亚铁氰化物的制备方法及其在液流电池中的应用,属于液流电池技术领域。本发明提供的制备方法反应条件温和,且得到的亚铁氰化物纯度高、产率高。本发明通过首先将含有目标产物阳离子的水溶液洗脱阳离子交换树脂制备阳离子交换柱,再将亚铁氰化钾或亚铁氰化钠的水溶液冲洗阳离子交换柱,得到含有亚铁氰根离子的溶液。除去水后,定量获得制备的亚铁氰化物。上述方法制备亚铁氰化物用于制备液流电池用阴极电解液。本发明制备的亚铁氰化物的方法反应条件温和,反应产率高,而且所得到的亚铁氰化物的纯度高,本发明提供的制备方法生产产率均为100%,所制备的亚铁氰化盐的纯度为100%。
-
公开(公告)号:CN114117815A
公开(公告)日:2022-03-01
申请号:CN202111468051.3
申请日:2021-12-03
Applicant: 哈尔滨工业大学
Abstract: 一种非最小相位运动系统逆模型前馈频域计算方法,属于超精密运动控制领域。前馈控制输入计算的目标是,得到一个理想前馈控制输入序列ur,当系统输入u=ur时,实现系统输出y对参考运动轨迹r的完全跟踪;所述方法适用于自身稳定的或可通过反馈控制稳定的线性定常系统,并且要求系统模型在复平面不含有单位圆上的零点。所述方法适用于单入单出系统或多入多出线性定常系统。本发明相对于现有技术的有益效果为:与近似求逆方法相比,本发明公开方法可以更准确地求解得到逆模型前馈控制输入;与时域稳定求逆方法相比,本发明公开方法实现了一种频域计算方式,并且无需对系统逆模型进行稳定‑不稳定分解,使计算过程更加简化。
-
公开(公告)号:CN113530971B
公开(公告)日:2022-02-08
申请号:CN202110865440.3
申请日:2021-07-29
Applicant: 哈尔滨工业大学
IPC: F16C32/04
Abstract: 一种动线圈式自驱动磁浮导轨装置及其控制方法,属于高端装备技术领域。四个导套支撑框架组合构成方形套,四个导套支撑框架的里侧面的中心处分别封装有E型组件,线圈绕组封装在位于上方的导套支撑框架的里侧面上,并位于E型组件的一侧;四个I型电磁铁分别封装在导轴支撑框架的上下左右四个侧面上,四个I型电磁铁与四个E型组件一一相对布置,永磁体封装在导轴支撑框架的上侧,永磁体与线圈绕组相对布置;双极电磁铁为E型,两个霍尔元件安装于双极电磁铁两级极面的中心处,感应线圈缠绕在双极电磁铁两级表面,初级线圈缠绕在双极电磁铁两级的感应线圈表面,电涡流传感器安装于双极电磁铁的中间齿的中心处。本发明用于超精密系统中。
-
-
-
-
-
-
-
-
-