基于物理冶金学指导下机器学习的超高强不锈钢设计方法

    公开(公告)号:CN110442954A

    公开(公告)日:2019-11-12

    申请号:CN201910698771.5

    申请日:2019-07-31

    IPC分类号: G06F17/50 G06K9/62 G06N3/12

    摘要: 本发明提供一种基于物理冶金学指导下机器学习的超高强不锈钢设计方法,涉及钢铁材料设计技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的集成学习算法模型;将集成学习算法模型的相关系数大于90%的作为遗传算法中的目标函数;遗传算法被用于优化设计成分及工艺获得超高强不锈钢,对不锈钢的成分及热处理条件进行设计;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、硬度。该方法可以提升模型泛化能力,使设计更为高效,设计结果更加符合物理冶金学原理。

    一种基于物理指导的机器学习算法的钢铁材料设计方法

    公开(公告)号:CN110428876A

    公开(公告)日:2019-11-08

    申请号:CN201910698739.7

    申请日:2019-07-31

    IPC分类号: G16C60/00 G06N20/10 G06N3/12

    摘要: 本发明提供一种基于物理指导的机器学习算法的钢铁材料设计方法,涉及钢铁材料的设计和机器学习应用技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的支持向量机模型;将基于物理冶金学指导的支持向量机模型的相关系数大于90%的作为遗传算法中的目标函数;得到优化后的成分、工艺及最佳目标性能的材料;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、目标性能。本方法将物理冶金机制引入到机器学习中,同时结合优化算法形成完备的设计平台,设计结果更加符合物理冶金学原理。

    基于物理冶金学指导下机器学习的低活化钢的设计方法

    公开(公告)号:CN110415769A

    公开(公告)日:2019-11-05

    申请号:CN201910698854.4

    申请日:2019-07-31

    IPC分类号: G16C20/10 G16C20/70 G06N3/12

    摘要: 本发明提供一种基于物理冶金学指导下机器学习的低活化钢的设计方法,涉及材料计算设计技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的集成学习算法模型;将集成学习算法模型的相关系数大于90%的作为遗传算法中的目标函数;遗传算法被用于优化设计成分及工艺获得最佳强度的低活化钢,对低活化钢的成分及工艺进行设计;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、屈服强度。该方法使基于统计学的机器学习富有了物理冶金学含义,并且该方法可以提升模型泛化能力,使设计更为高效,设计结果更加符合物理冶金学原理。

    基于物理冶金学指导下机器学习的Q&P钢的设计方法

    公开(公告)号:CN110442953A

    公开(公告)日:2019-11-12

    申请号:CN201910698740.X

    申请日:2019-07-31

    IPC分类号: G06F17/50 G06N3/12 G06N20/10

    摘要: 本发明提供一种基于物理冶金学指导下机器学习的Q&P钢的设计方法,涉及汽车钢的成分工艺设计技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的集成学习算法模型;将集成学习算法模型的相关系数大于85%的作为遗传算法中的目标函数;遗传算法被用于优化设计成分及工艺获得最佳强塑积的Q&P钢,对Q&P钢的成分及工艺进行设计;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、强塑积。本方法相对于单纯机器学习,可以提升模型泛化能力,使设计更为高效,设计结果更加符合物理冶金学原理。

    一种基于物理指导的机器学习算法的钢铁材料设计方法

    公开(公告)号:CN110428876B

    公开(公告)日:2022-11-29

    申请号:CN201910698739.7

    申请日:2019-07-31

    IPC分类号: G16C60/00 G06N20/10 G06N3/12

    摘要: 本发明提供一种基于物理指导的机器学习算法的钢铁材料设计方法,涉及钢铁材料的设计和机器学习应用技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的支持向量机模型;将基于物理冶金学指导的支持向量机模型的相关系数大于90%的作为遗传算法中的目标函数;得到优化后的成分、工艺及最佳目标性能的材料;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、目标性能。本方法将物理冶金机制引入到机器学习中,同时结合优化算法形成完备的设计平台,设计结果更加符合物理冶金学原理。

    基于物理冶金学指导下机器学习的Q&P钢的设计方法

    公开(公告)号:CN110442953B

    公开(公告)日:2022-11-25

    申请号:CN201910698740.X

    申请日:2019-07-31

    摘要: 本发明提供一种基于物理冶金学指导下机器学习的Q&P钢的设计方法,涉及汽车钢的成分工艺设计技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的集成学习算法模型;将集成学习算法模型的相关系数大于85%的作为遗传算法中的目标函数;遗传算法被用于优化设计成分及工艺获得最佳强塑积的Q&P钢,对Q&P钢的成分及工艺进行设计;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、强塑积。本方法相对于单纯机器学习,可以提升模型泛化能力,使设计更为高效,设计结果更加符合物理冶金学原理。

    基于物理冶金学指导下机器学习的低活化钢的设计方法

    公开(公告)号:CN110415769B

    公开(公告)日:2022-10-21

    申请号:CN201910698854.4

    申请日:2019-07-31

    IPC分类号: G16C20/10 G16C20/70 G06N3/12

    摘要: 本发明提供一种基于物理冶金学指导下机器学习的低活化钢的设计方法,涉及材料计算设计技术领域。本发明首先采集数据,采用多次留出法将数据划分训练集及测试集;根据训练集建立基于物理冶金学指导的集成学习算法模型;将集成学习算法模型的相关系数大于90%的作为遗传算法中的目标函数;遗传算法被用于优化设计成分及工艺获得最佳强度的低活化钢,对低活化钢的成分及工艺进行设计;对于得到的大量设计结果采用SVC分类器进行分类筛选,输出其典型合金的成分、工艺、屈服强度。该方法使基于统计学的机器学习富有了物理冶金学含义,并且该方法可以提升模型泛化能力,使设计更为高效,设计结果更加符合物理冶金学原理。