一种基于对抗特征学习的水稻蚜虫检测方法

    公开(公告)号:CN107194418B

    公开(公告)日:2021-09-28

    申请号:CN201710325110.9

    申请日:2017-05-10

    Abstract: 本发明涉及一种基于对抗特征学习的水稻蚜虫检测方法,与现有技术相比解决了水稻蚜虫识别率低、鲁棒性差的缺陷。本发明包括以下步骤:水稻蚜虫图像的收集和预处理;获得水稻蚜虫图像检测模型;待检测水稻图像的收集和预处理;蚜虫在图像中具体位置的标记,将待检测图像输入训练完成后的水稻蚜虫图像检测模型,进行水稻蚜虫的检测,定位并标记出蚜虫在图像中具体位置。本发明通过图像判别网络模型与图像生成网络模型之间的对抗训练,提高了图像判别网络模型的识别能力,提高了水稻蚜虫识别率。

    基于局部密集区域密度特征检测的微小害虫图像识别方法

    公开(公告)号:CN113159183A

    公开(公告)日:2021-07-23

    申请号:CN202110440782.0

    申请日:2021-04-23

    Abstract: 本发明涉及基于局部密集区域密度特征检测的微小害虫图像识别方法,与现有技术相比解决了微小害虫识别率低的缺陷。本发明包括以下步骤:训练图像的获取;害虫密集区域检测网络的构建;害虫密集区域检测网络的训练;害虫密集区域标准化;局部区域害虫目标检测网络组的构建与训练;全局害虫目标检测网络的构建与训练;害虫检测结果融合;待检测害虫图像的获取;害虫图像检测结果的获得。本发明利用微小害虫聚集区域的密度特征信息,将密集区域准确切分出并进行单独的害虫目标检测,弥补了全局害虫目标检测在该类区域中存在的检测遗漏及检测精度不高等问题,提高了微小害虫图像检测的整体检测精度。

Patent Agency Ranking