-
公开(公告)号:CN117710850A
公开(公告)日:2024-03-15
申请号:CN202311575656.1
申请日:2023-11-23
申请人: 中国科学院计算技术研究所
摘要: 本发明提出一种基于时空分解与对齐的端到端动作视频生成方法,包括:构建视频生成模型,以一组姿势关键点、参考前景及参考背景作为该视频生成模型的模型输入,以目标动作视频作为该视频生成模型的模型输出;将该目标动作视频的原始视频空间分解为多组时空子空间,通过动作流引导使各组时空子空间的子空间特征对齐;将对齐后的各组时空子空间恢复为该原始视频空间,并得到该目标动作视频。本发明还提出一种基于时空分解与对齐的端到端动作视频生成系统,以及一种用于实现基于时空分解与对齐的端到端动作视频生成的数据处理装置。
-
公开(公告)号:CN113627498B
公开(公告)日:2024-03-12
申请号:CN202110854800.X
申请日:2021-07-28
申请人: 中国科学院计算技术研究所
IPC分类号: G06V10/764 , G06V10/774 , G06V10/46 , G06V10/82 , G06N3/0464 , G06N3/08
摘要: 本发明公开了一种人物丑化图像识别模型训练方法,包括以下步骤:将真实图像样本输入到丑化分类器中进行训练以使该其具有图像分类和图像特征提取的功能;冻结该丑化分类器的网络参数并将其作为图像特征提取器,将噪声和该真实图像样本输入到分类有益生成对抗网络进行训练以使其具有生成合成图像样本的功能;将该分类有益生成对抗网络生成的合成图像样本输入到该丑化分类器中进行进一步训练,得到该丑化分类器即为该人物丑化图像识别模型。
-
公开(公告)号:CN117271768A
公开(公告)日:2023-12-22
申请号:CN202311208664.2
申请日:2023-09-19
申请人: 中国科学院计算技术研究所
IPC分类号: G06F16/35 , G06F40/126 , G06F40/279 , G06N3/0499
摘要: 本发明提出一种基于大语言模型分析引导的虚假新闻检测方法,通过将大语言模型的分析中蕴含的知识选择性地注入到小语言模型中,实现大语言模型和小语言模型的协同检测。为进一步降低检测成本,通过知识迁移的方式,基于训练完成的上述网络中得到基于大语言模型分析知识迁移的虚假新闻检测网络,该网络的特点是无需大语言模型分析作为输入,仅使用检测网络中凝结的大模型分析知识用于检测。
-
公开(公告)号:CN116883775A
公开(公告)日:2023-10-13
申请号:CN202310714418.8
申请日:2023-06-15
申请人: 中国科学院计算技术研究所
IPC分类号: G06V10/774 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0475 , G06N3/0464 , G06N3/08
摘要: 本发明提出一种开放环境的模型溯源方法,包括:以已知图像和对应的已知图像生成模型类别构建为闭集样本;以卷积神经网络构建增强模型,基于该闭集样本以该增强模型生成对应未知图像生成模型类别的开集样本;以该闭集样本和该开集样本训练任务模型,通过完成训练的任务模型预测给定图像的图像生成模型。本发明还提出一种开放环境的模型溯源系统,以及一种用于开放环境下模型溯源的数据处理装置。
-
公开(公告)号:CN116189313A
公开(公告)日:2023-05-30
申请号:CN202211387389.0
申请日:2022-11-07
申请人: 中国科学院计算技术研究所
摘要: 本发明提出一种基于并发策略的深度合成图像视频伪造检测方法和系统,包括:获取由多个操作构成的深伪检测流程,将该深伪检测流程中操作耗时程度大于预设值的操作作为独立操作,并通过为每个独立操作的数据输入,构建对应的输入缓存队列,得到独立检测流程;以多个该独立检测流程并发执行图像的伪造检测任务,且在伪造检测过程中每个独立检测流程的输入缓存队列根据打包数据策略,将队列中的数据打包送入与当前输入缓存队列对应的独立操作;汇总各独立检测流程的输出,得到该图像的伪造检测结果。
-
公开(公告)号:CN113449601B
公开(公告)日:2023-05-16
申请号:CN202110591209.X
申请日:2021-05-28
申请人: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC分类号: G06V40/10 , G06V20/40 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/084
摘要: 本发明提出一种基于渐进性平滑损失的行人重识别模型训练方法,包括:获取训练样本数据;其中,所述训练样本数据包括多个包含行人的视频;将所述训练样本数据输入至初始模型中,得到对应各所述包含行人的视频的帧级别特征和视频级别特征;分别基于所述帧级别特征和所述视频级别特征计算第一损失和第二损失;基于所述第一损失和所述第二损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN110472493B
公开(公告)日:2022-01-21
申请号:CN201910604601.6
申请日:2019-07-05
申请人: 中国科学院计算技术研究所
IPC分类号: G06K9/00
摘要: 本发明提出一种基于一致性特征(ConsensusFeatures)的场景分割方法和系统,包括对特征提取器学习到的特征进行实例一致性变换和类别一致性变换,将变换后的特征输入到场景分割子网络,得到原始图像的场景分割结果。本发明提出了一种通过实例一致性变换单元去学习实例层次的一致性特征。另一方面,由于在场景图像中存在着多个同类实例,本发明使用类别一致性单元去学习类层次的一致性特征。这两个单元极大地提高了现有基于全卷积的场景分割模型的性能。
-
公开(公告)号:CN113627498A
公开(公告)日:2021-11-09
申请号:CN202110854800.X
申请日:2021-07-28
申请人: 中国科学院计算技术研究所
摘要: 本发明公开了一种人物丑化图像识别模型训练方法,包括以下步骤:将真实图像样本输入到丑化分类器中进行训练以使该其具有图像分类和图像特征提取的功能;冻结该丑化分类器的网络参数并将其作为图像特征提取器,将噪声和该真实图像样本输入到分类有益生成对抗网络进行训练以使其具有生成合成图像样本的功能;将该分类有益生成对抗网络生成的合成图像样本输入到该丑化分类器中进行进一步训练,得到该丑化分类器即为该人物丑化图像识别模型。
-
公开(公告)号:CN113343810A
公开(公告)日:2021-09-03
申请号:CN202110590381.3
申请日:2021-05-28
申请人: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
摘要: 本发明提出一种基于时序多样性与相关性的行人重识别模型训练方法,包括以下步骤:获取训练样本数据,所述训练样本数据包括多个包含行人的视频序列;将所述训练样本数据输入至初始模型中采样各所述包含行人的视频序列的多帧视频,并且提取所述多帧视频的帧级别特征,聚合所述帧级别特征得到视频级别特征;基于所述视频级别特征计算视频级别损失;基于所述视频级别损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN109034198B
公开(公告)日:2020-12-11
申请号:CN201810664250.3
申请日:2018-06-25
申请人: 中国科学院计算技术研究所
IPC分类号: G06K9/62
摘要: 本发明涉及一种基于特征图恢复的场景分割方法和系统,包括对原始图像进行降采样,得到降采样图像,通过特征学习网络得到该降采样图像的降采样特征图,将该降采样特征图的尺寸恢复为原始图像尺寸,得到上采样特征图,将该上采样特征图输入场景分割网络,得到该原始图像的场景分割结果。本发明利用降采样输入图像可以获得的较快的分割速度;利用原始大小输入图像可以获得的较高的分割精度。此外,本发明还提出了辅助中间层监督和边境区域重加权的方法辅助场景分割神经网络模型的优化过程,从而在保持模型加速的前提下提升加速后模型的分割精度。
-
-
-
-
-
-
-
-
-