-
公开(公告)号:CN118314918A
公开(公告)日:2024-07-09
申请号:CN202410478707.7
申请日:2024-04-20
申请人: 中国铁道科学研究院集团有限公司节能环保劳卫研究所 , 中国国家铁路集团有限公司 , 中国铁道科学研究院集团有限公司 , 北京中铁科节能环保新技术有限公司 , 铁科节能环保技术有限公司 , 北京铁科环保检测技术有限公司
IPC分类号: G10L21/0232 , G10L21/0264 , G10L25/21 , G10L25/51
摘要: 本发明涉及一种分频的高速铁路运动噪声源识别分析方法,属于声源定位技术领域,步骤如下:(1)根据波束形成原理公式,建立声阵列的点传波函数快速计算方法;(2)根据声阵列与声源的距离参数,计算分析频率范围内全尺寸阵列性能;(3)确定频率划分方案,计算各分频段的最优子阵列形式;(4)分频进行噪声源识别分析,得到各分频段声功率;(5)各频段声功率合并,得到全频段声源识别结果。本发明基于一个大阵列的一次测试,得到更为精准的宽频带噪声源识别结果,相对于针对不同声源,设置不同的阵列,或采取多次非同时测量的方式,测试和数据分析效率以及识别分辨率均有大幅提升。
-
公开(公告)号:CN117668995A
公开(公告)日:2024-03-08
申请号:CN202311716545.8
申请日:2023-12-14
IPC分类号: G06F30/13 , G06F30/20 , G06F119/14 , G06F111/04 , G06F119/10 , G06F119/12
摘要: 本发明涉及一种基于接触非线性效应的铁路插板式声屏障动力响应分析方法,属于噪声控制技术领域,步骤如下:(1)基于插板式声屏障的构造特点,构建铁路插板式声屏障动力分析模型;(2)确定插板式声屏障结构动力分析关键参数取值;(3)获取列车对声屏障的气动荷载;(4)数值求解声屏障结构的振动响应。本发明的基于接触非线性效应的铁路插板式声屏障动力响应分析方法,可反映结构真实动力响应特征,能够为声屏障结构设计与性能评估提供指导。
-
公开(公告)号:CN114771605B
公开(公告)日:2023-08-29
申请号:CN202210307887.3
申请日:2022-03-25
摘要: 本发明涉及基于声学监测的高速铁路列车‑轨道‑环境一体化监测方法,属于高速铁路噪声、信号处理、故障诊断技术领域,其步骤如下:(1)时空同步;(2)钢轨波磨实时判定;(3)定位与数据分析;(4)波磨信号判定预警。本发明的基于声学监测的高速铁路列车‑轨道‑环境一体化监测方法,不仅在提升运维效率、运营舒适性上具备显著经济价值和社会意义,而且在车内声品质评价、钢轨声学打磨等更关注人的保护方面具有广阔应用前景。
-
公开(公告)号:CN114771605A
公开(公告)日:2022-07-22
申请号:CN202210307887.3
申请日:2022-03-25
摘要: 本发明涉及基于声学监测的高速铁路列车‑轨道‑环境一体化监测方法,属于高速铁路噪声、信号处理、故障诊断技术领域,其步骤如下:(1)时空同步;(2)钢轨波磨实时判定;(3)定位与数据分析;(4)波磨信号判定预警。本发明的基于声学监测的高速铁路列车‑轨道‑环境一体化监测方法,不仅在提升运维效率、运营舒适性上具备显著经济价值和社会意义,而且在车内声品质评价、钢轨声学打磨等更关注人的保护方面具有广阔应用前景。
-
公开(公告)号:CN116129845A
公开(公告)日:2023-05-16
申请号:CN202211622128.2
申请日:2022-12-16
IPC分类号: G10K11/162 , G10K11/168
摘要: 本发明涉及一种基于磁控机理的模式可切换薄膜型声学超材料结构,涉及噪声控制技术领域,步骤如下:(1)构建薄膜型超材料声振耦合模型;(2)建立薄膜型超材料磁控力关系;(3)设计薄膜型超材料结构;(4)标定圆环质量块磁力;(5)制备薄膜型超材料,实现基于磁控机理的模式可切换。本发明的基于磁控机理的模式可切换薄膜型声学超材料结构具有可设计性强的特征,最终实现了非接触、非连续调控。
-
公开(公告)号:CN112722010A
公开(公告)日:2021-04-30
申请号:CN202110151894.4
申请日:2021-02-03
IPC分类号: B61L23/04 , B61K9/08 , B61K9/10 , G01H17/00 , G01C21/16 , G01S17/88 , G01S19/52 , G01S19/14 , G01P15/09
摘要: 本发明涉及一种用于轨道交通的钢轨波磨声学诊断系统,属于轨道交通振动噪声技术领域;包括上位机、下位机、车检地系统和地检车系统,上位机与下位机无线或有线连接;下位机分别与车检地系统和地检车系统相连接;车检地包括布置于车下转向架处的传声器、加速度传感器、惯性导航元件和GPS接收板卡;地检车系统包括布置于轨道旁的传声器、激光雷达和相机。本发明对轨道波磨状态进行诊断,能在时频谱特征中准确地识别钢轨波磨特征,特征频率识别较为准确,检测效率高,具有明显的早期预警和快速检测优势,同时可大幅减少静态监测钢轨波磨产生的费用,具有重要的经济价值和现实意义,可以为确定合理的打磨周期以及噪声控制研究提供技术支撑。
-
公开(公告)号:CN114417649A
公开(公告)日:2022-04-29
申请号:CN202111438471.7
申请日:2021-11-30
IPC分类号: G06F30/23 , G06F119/10
摘要: 本发明公开了一种移动荷载下的精细化瞬态有限元‑边界元高速铁路钢轨振动声辐射高效测量方法,属于铁路噪声仿真、计算方法技术领域,通过建立钢轨离散支撑有限元‑边界元模型,采用APDL命令流方法对移动激励单轮激励和移动双轮相干激励下不同移动速度、激励频率下的瞬态响应进行计算,高效获得移动荷载下的钢轨振动响应特性,并对钢轨瞬态声辐射特性进行计算。本发明的移动荷载下的精细化瞬态有限元‑边界元高速铁路钢轨振动声辐射高效测量方法,采用在有限元软件ANSYS中用APDL语言编写瞬态计算命令的方式,并联合ACOUSTIC软件,对高速铁路钢轨在移动激励下的钢轨振动声辐射响应进行高效计算,精度较高,计算较快。
-
公开(公告)号:CN114400011A
公开(公告)日:2022-04-26
申请号:CN202111438450.5
申请日:2021-11-30
IPC分类号: G10L19/02 , G10L21/0232 , G10L25/51
摘要: 本发明公开了一种用于高速铁路钢轨波磨声学诊断的声信号降噪方法,属于高速铁路噪声、信号处理、故障诊断技术领域,其步骤如下:设声信号的时域信号为X(n),加窗分帧处理,得到第i帧声信号为xi(m),帧长为N,任意帧声信号xi(m)做离散傅里叶变换;已知无目标信号的声信号(纯噪音声段)时长为IS,对应的帧数为NIS,求出该噪声段的平均能量值;最后,进行谱减算法;开方,得到谱减之后的幅值把谱减前的相位角信息直接用到谱减后的声信号中,快速傅里叶逆变换(IFFT),求出谱减法处理之后的声信号时域序列本发明的用于高速铁路钢轨波磨声学诊断的声信号降噪方法,利用谱减法自适应降噪,可以有效降低气动噪声的干扰,提高钢轨波磨声学诊断的有效性和准确度。
-
公开(公告)号:CN108846216A
公开(公告)日:2018-11-20
申请号:CN201810643122.0
申请日:2018-06-21
IPC分类号: G06F17/50
摘要: 本发明公开了一种高精度高速铁路环境噪声预测方法,属于环境保护技术领域;其步骤如下:(1)声源的确定:采用声阵列技术开展声源识别试验,获取动车组受电弓、车体区域以及轮轨区域声功率级,作为预测方法中的声源输入;(2)预测点的确定:分别选择预测点,计算预测点至动车组受电弓、车体区域以及轮轨区域三个声源的距离;(3)噪声预测:基于上述动车组受电弓、车体区域以及轮轨区域声功率级,将预测点至各声源的距离分别代入,按照受电弓、车体区域以及轮轨区域分别进行预测;(4)预测结果:受声点接受到的总声级为三个声源的叠加。本发明的方法构建了高速铁路声源几何发散衰减理论计算模型,预测精度可控制在1dB以内。
-
公开(公告)号:CN116678492A
公开(公告)日:2023-09-01
申请号:CN202310757579.5
申请日:2023-06-26
摘要: 本发明公开了一种适用于高速铁路声屏障的列车风致振动与轮轨激励振动测试系统及方法,属于铁路环保领域;其步骤如下:(1)列车信号自动触发测试;(2)列车风压测试;(3)列车轮轨激励振动测试;(4)声屏障结构振动响应测试;(5)数据综合分析处理。本发明的测试系统及方法,基于通过高速列车诱发声屏障结构振动的两种主要因素,列车风压及轮轨激励振动,设计了一种可自动、同步采集的列车风致振动与轮轨激励振动测试系统及方法,实现了高速铁路声屏障列车致结构振动响应的系统测试,实现了列车风压和轮轨激励振动两种振动激励源信号的同步采集及综合分析,为高速铁路声屏障的结构优化设计和安全运营提供支撑。
-
-
-
-
-
-
-
-
-