基于前向-反向可分离自注意力的图像超分辨率重建方法

    公开(公告)号:CN117132472A

    公开(公告)日:2023-11-28

    申请号:CN202311290723.5

    申请日:2023-10-08

    Abstract: 本发明公开了基于前向‑反向可分离自注意力的图像超分辨率重建方法,属于图像处理技术领域,包括;将获取的目标低分辨率图像输入至训练好的前向‑反向可分离自注意力网络模型中,输出对应的高分辨率图像;网络模型包括:浅层提取模块用于对输入的目标低分辨率图像进行初始特征提取;多个深层提取模块用于对初始特征进行多尺度特征提取,获得前向‑反向可分离自注意力网络模型的输出特征;上采样模块用于对输出特征进行上采样处理,获得上采样特征图;重建模块用于对上采样特征图进行处理,获得目标低分辨率图像对应的高分辨率图像;该方法其既可以多尺度提取不同的结构信息,又可提取重要信息,增强特征选择能力,提高了图像超分辨率重建精度。

    基于前向-反向可分离自注意力的图像超分辨率重建方法

    公开(公告)号:CN117132472B

    公开(公告)日:2024-05-31

    申请号:CN202311290723.5

    申请日:2023-10-08

    Abstract: 本发明公开了基于前向‑反向可分离自注意力的图像超分辨率重建方法,属于图像处理技术领域,包括;将获取的目标低分辨率图像输入至训练好的前向‑反向可分离自注意力网络模型中,输出对应的高分辨率图像;网络模型包括:浅层提取模块用于对输入的目标低分辨率图像进行初始特征提取;多个深层提取模块用于对初始特征进行多尺度特征提取,获得前向‑反向可分离自注意力网络模型的输出特征;上采样模块用于对输出特征进行上采样处理,获得上采样特征图;重建模块用于对上采样特征图进行处理,获得目标低分辨率图像对应的高分辨率图像;该方法其既可以多尺度提取不同的结构信息,又可提取重要信息,增强特征选择能力,提高了图像超分辨率重建精度。

Patent Agency Ranking