-
公开(公告)号:CN115062686B
公开(公告)日:2024-12-31
申请号:CN202210490264.4
申请日:2022-05-07
Applicant: 北京交通大学
IPC: G06F18/2433 , G06F18/213 , G06F18/2131 , G06F18/25 , G06F18/214 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/048 , G06N3/088 , H04L43/08 , G06F123/02
Abstract: 本发明提供了一种基于多角度特征的多元KPI时序异常检测方法和系统,属于KPI异常检测领域。所述方法从嵌入图、时域、频域三个角度提取KPI时序的特征,再分别使用图卷积神经网络、时域卷积神经网络和谱网络对三种特征进行数据特征学习表示,再利用全连接神经网络和Softmax函数得到各特征的注意力分数,根据注意力分数对不同特征表示进行融合,然后输入到解码器中得到原始数据的重构表示,构成完整的多元KPI时序异常检测模型;基于历史数据对模型训练完成后,将待检测的多元KPI时序输入到成熟的检测模型中,检测数据中是否存在异常。本发明提不需要人工对异常进行标注,减少了检测过程中的人力需求,提高了运维管理系统异常检测的准确度和效率。
-
公开(公告)号:CN115062692A
公开(公告)日:2022-09-16
申请号:CN202210606069.3
申请日:2022-05-31
Applicant: 北京交通大学
Abstract: 本发明提供了一种永磁同步电机状态量预测模型构建方法及状态量预测方法,用于解决现有技术中状态量监控不实时、不准确的问题。所述方法采集包括采样时刻驱动物理量和对应状态量的历史数据作为数据点;预处理后,计算每个数据点中的驱动物理量与状态量之间的相关性,构建第一驱动物理量集合;计算第一驱动物理量集合中驱动物理量两两之间的相关性,得到第二驱动物理量集合;再计算所有第二驱动物理量集合中的同一驱动物理量间的相关性,确定时间窗长度;再设置滑动窗口及步长,构建包含同时期信息输入量及历史期信息输入量及输出状态量的样本点,得到训练集和验证集;搭建状态量预测模型后进行训练和验证。本发明提高了状态量预测的实时性及准确性。
-
公开(公告)号:CN115062686A
公开(公告)日:2022-09-16
申请号:CN202210490264.4
申请日:2022-05-07
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于多角度特征的多元KPI时序异常检测方法和系统,属于KPI异常检测领域。所述方法从嵌入图、时域、频域三个角度提取KPI时序的特征,再分别使用图卷积神经网络、时域卷积神经网络和谱网络对三种特征进行数据特征学习表示,再利用全连接神经网络和Softmax函数得到各特征的注意力分数,根据注意力分数对不同特征表示进行融合,然后输入到解码器中得到原始数据的重构表示,构成完整的多元KPI时序异常检测模型;基于历史数据对模型训练完成后,将待检测的多元KPI时序输入到成熟的检测模型中,检测数据中是否存在异常。本发明提不需要人工对异常进行标注,减少了检测过程中的人力需求,提高了运维管理系统异常检测的准确度和效率。
-
-