基于目标影像的病灶检测方法和装置

    公开(公告)号:CN112634224B

    公开(公告)日:2023-07-28

    申请号:CN202011503029.3

    申请日:2020-12-17

    Abstract: 本发明提供一种基于目标影像的病灶检测方法和装置,该方法包括:提取待检测的目标影像;对于当前循环,获取当前查询切片中病灶的预测位置;将当前查询切片和当前查询切片中病灶的预测位置输入至病灶检测模型的修正模块,获取当前查询切片中病灶的修正位置;利用当前查询切片中病灶的修正位置更新所述当前参考切片,重复上述步骤,直到目标影像中病灶的区域面积小于预设阈值。本发明通过将目标影像中的病灶检测分为两个阶段,提取阶段和修正阶段,在提取阶段中进行病灶位置的粗预测,在修正阶段中进行病灶位置的精预测,以此来提高病灶位置的预测精度。

    基于目标影像的病灶检测方法和装置

    公开(公告)号:CN112634224A

    公开(公告)日:2021-04-09

    申请号:CN202011503029.3

    申请日:2020-12-17

    Abstract: 本发明提供一种基于目标影像的病灶检测方法和装置,该方法包括:提取待检测的目标影像;对于当前循环,获取当前查询切片中病灶的预测位置;将当前查询切片和当前查询切片中病灶的预测位置输入至病灶检测模型的修正模块,获取当前查询切片中病灶的修正位置;利用当前查询切片中病灶的修正位置更新所述当前参考切片,重复上述步骤,直到目标影像中病灶的区域面积小于预设阈值。本发明通过将目标影像中的病灶检测分为两个阶段,提取阶段和修正阶段,在提取阶段中进行病灶位置的粗预测,在修正阶段中进行病灶位置的精预测,以此来提高病灶位置的预测精度。

    肿瘤治疗预后预测方法、装置、电子设备及存储介质

    公开(公告)号:CN116721772B

    公开(公告)日:2023-10-20

    申请号:CN202311002302.8

    申请日:2023-08-10

    Abstract: 本发明提供一种肿瘤治疗预后预测方法、装置、电子设备及存储介质,属于医学检测技术领域,所述方法包括:获取待测患者的肿瘤抗HER2治疗信息,肿瘤抗HER2治疗信息包括肿瘤组织的切片图像、临床报告信息和患者信息;将待测患者的肿瘤抗HER2治疗信息输入至双模态预后模型,得到双模态预后模型输出的待测患者的肿瘤抗HER2治疗预后预测结果;双模态预后模型用于对肿瘤抗HER2治疗信息中的肿瘤组织的切片图像、临床报告信息和患者信息进行多模态特征融合,并基于融合得到的特征确定待测患者的肿瘤抗HER2治疗预后预测结果。本发明可以有效提高肿瘤抗HER2治疗预后预测精度,有助于患者的肿瘤抗HER2治疗预后的有效评估。

    基于增量学习的轻量化物体检测方法和装置

    公开(公告)号:CN115170858A

    公开(公告)日:2022-10-11

    申请号:CN202210518146.X

    申请日:2022-05-12

    Applicant: 北京大学

    Abstract: 本发明提供一种基于增量学习的轻量化物体检测方法和装置,所述基于增量学习的轻量化物体检测方法,包括:获取待测图像和目标特征类别图像;将待测图像输入至检测模块,获取由检测模块输出的多个子特征图像;将多个子特征图像输入至分类模块,获取由分类模块输出子特征图像对应的特征表达,以及多个子特征图像中第一目标子特征图像对应的类别;基于多个子特征图像中第二目标子特征图像对应的特征表达和目标特征类别图像间的相似度,确定第二目标子特征图像对应的类别。本发明的基于增量学习的轻量化物体检测方法,在无需重复训练的前提下,即可完成对新类别的识别,显著提高模型的泛化能力和扩展性,适用于涉及不断变化的信息流的情景。

    基于区域感知度量学习的开放世界语义分割方法和装置

    公开(公告)号:CN114998585A

    公开(公告)日:2022-09-02

    申请号:CN202210513831.3

    申请日:2022-05-11

    Applicant: 北京大学

    Abstract: 本发明提供一种基于区域感知度量学习的开放世界语义分割方法和装置,所述方法包括:对目标图像进行异常区域分割,生成未知区域以及未知区域对应的区域感知特征;对未知区域进行切分,生成多个未知子区域以及未知子区域对应的区域感知特征;基于未知子区域对应的区域感知特征与第一目标类别对应的目标区域感知特征,确定未知子区域对应的类别;其中,第一目标类别为目标图像对应的多个特征类别中的未知类别。本发明的基于区域感知度量学习的开放世界语义分割方法,基于MCA模块对未知区域进行进一步分割生成未知子区域以进行增量少样本学习,从而提高模型对分布外对象的识别性能,以提高分割结果的精度与准确性,从而提高最终的分割效果。

    肿瘤治疗预后预测方法、装置、电子设备及存储介质

    公开(公告)号:CN116721772A

    公开(公告)日:2023-09-08

    申请号:CN202311002302.8

    申请日:2023-08-10

    Abstract: 本发明提供一种肿瘤治疗预后预测方法、装置、电子设备及存储介质,属于医学检测技术领域,所述方法包括:获取待测患者的肿瘤抗HER2治疗信息,肿瘤抗HER2治疗信息包括肿瘤组织的切片图像、临床报告信息和患者信息;将待测患者的肿瘤抗HER2治疗信息输入至双模态预后模型,得到双模态预后模型输出的待测患者的肿瘤抗HER2治疗预后预测结果;双模态预后模型用于对肿瘤抗HER2治疗信息中的肿瘤组织的切片图像、临床报告信息和患者信息进行多模态特征融合,并基于融合得到的特征确定待测患者的肿瘤抗HER2治疗预后预测结果。本发明可以有效提高肿瘤抗HER2治疗预后预测精度,有助于患者的肿瘤抗HER2治疗预后的有效评估。

Patent Agency Ranking