-
公开(公告)号:CN104777785A
公开(公告)日:2015-07-15
申请号:CN201510093312.6
申请日:2015-03-02
申请人: 华中科技大学 , 武汉华中数控股份有限公司 , 襄阳华中科技大学先进制造工程研究院
IPC分类号: G05B19/18
CPC分类号: G05B19/41
摘要: 本发明公开了一种基于指令域分析的数控加工工艺参数动态优化方法,包括:(1)设置采样的加工状态信息和加工程序指令序列信息,并相应配置形成加工信息动态采集界面;(2)实时采集获取实际加工数据,并利用正余弦算子对采集的数据进行迭代平滑处理,并提取滤波处理后信号的特征值;(3)根据当前行加工的G指令和/或刀位轨迹类型在工艺系数数据库中选择确定优化系数;(4)利用上述步骤获取的特征值以及优化系数,建立优化模型,据此计算当前合理的工艺参数,从而实现对加工工艺参数的动态优化。本发明的方法以指令域分析为基础,可以实现对数控系统工艺参数快速优化,实现与插补周期同步,最大程度实现数控系统加工质量与效率的提升。
-
公开(公告)号:CN104777785B
公开(公告)日:2016-04-20
申请号:CN201510093312.6
申请日:2015-03-02
申请人: 华中科技大学 , 武汉华中数控股份有限公司 , 襄阳华中科技大学先进制造工程研究院
IPC分类号: G05B19/18
摘要: 本发明公开了一种基于指令域分析的数控加工工艺参数动态优化方法,包括:(1)设置采样的加工状态信息和加工程序指令序列信息,并相应配置形成加工信息动态采集界面;(2)实时采集获取实际加工数据,并利用正余弦算子对采集的数据进行迭代平滑处理,并提取滤波处理后信号的特征值;(3)根据当前行加工的G指令和/或刀位轨迹类型在工艺系数数据库中选择确定优化系数;(4)利用上述步骤获取的特征值以及优化系数,建立优化模型,据此计算当前合理的工艺参数,从而实现对加工工艺参数的动态优化。本发明的方法以指令域分析为基础,可以实现对数控系统工艺参数快速优化,实现与插补周期同步,最大程度实现数控系统加工质量与效率的提升。
-
公开(公告)号:CN112571162A
公开(公告)日:2021-03-30
申请号:CN202011191499.0
申请日:2020-10-30
申请人: 襄阳华中科技大学先进制造工程研究院 , 武汉华中数控股份有限公司 , 华中科技大学
摘要: 本发明公开一种数控冰刀专用磨削装置及冰刀磨削方法,其中,数控冰刀专用磨削装置包括机床组件和安装在机床组件上的测量组件、装夹组件和磨削组件;机床组件包括机架、X轴运动模组、Y轴运动模组和Z轴运动模组;X轴运动模组安装在机架上表面,Y轴运动模组安装在机架一侧的立架上,Z轴运动模组滑动安装在Y轴运动模组上;测量组件与磨削组件滑动安装在Z轴运动模组上,测量组件用于测量冰刀的轮廓曲线,磨削组件用于磨削冰刀;装夹组件滑动安装在X轴运动模组上,用于装夹冰刀。其采用高精度多轴数控机床对冰刀刃口进行弧面磨削,同时采用测量组件对冰刀轮廓进行测量比对,不仅提高冰刀刃口的磨削质量,而且可以显著提升磨削效率。
-
公开(公告)号:CN213828216U
公开(公告)日:2021-07-30
申请号:CN202022486041.X
申请日:2020-10-30
申请人: 襄阳华中科技大学先进制造工程研究院 , 武汉华中数控股份有限公司 , 华中科技大学
摘要: 本实用新型公开一种数控冰刀专用磨削装置,包括机床组件和安装在机床组件上的测量组件、装夹组件和磨削组件;机床组件包括机架、X轴运动模组、Y轴运动模组和Z轴运动模组;X轴运动模组安装在机架上表面,Y轴运动模组安装在机架一侧的立架上,Z轴运动模组滑动安装在Y轴运动模组上;测量组件与磨削组件滑动安装在Z轴运动模组上,测量组件用于测量冰刀的轮廓曲线,磨削组件用于磨削冰刀;装夹组件滑动安装在X轴运动模组上,用于装夹冰刀。其采用高精度多轴数控机床对冰刀刃口进行弧面磨削,同时采用测量组件对冰刀轮廓进行测量比对,不仅提高冰刀刃口的磨削质量,而且可以显著提升磨削效率。
-
公开(公告)号:CN113455752A
公开(公告)日:2021-10-01
申请号:CN202110716218.7
申请日:2021-06-28
申请人: 襄阳华智科技有限公司 , 华中科技大学 , 襄阳华中科技大学先进制造工程研究院
IPC分类号: A41D13/005
摘要: 本发明公开了一种面式降温的智能舒适液冷服,包括服装本体、主管路、支管路、动力泵、控制板和冷量模块;服装本体包括从外至内顺次设置的第一织物层、第一防水透气膜、多孔介质层、第二防水透气膜和第二织物层;第一防水透气膜、多孔介质层、第二防水透气膜形成密封薄层域;支管路的出口嵌入在多孔介质层内部,其进口连接至动力泵;动力泵还与冷量模块相连;主管路的入口和出口分别与密封薄层域和冷量模块相连;冷量模块包含降温介质;动力泵在电路板的作用下将冷量模块中的降温介质抽出,并通过支管路将降温介质送入至多孔介质层,最终由主管路送入流回冷量模块。本发明能消除液冷服管路的异物感和温度不均匀的不舒适感,提高个体穿着的舒适性。
-
公开(公告)号:CN108406329B
公开(公告)日:2020-07-21
申请号:CN201810110220.8
申请日:2018-02-05
申请人: 襄阳华中科技大学先进制造工程研究院 , 华中科技大学
IPC分类号: B23P23/06
摘要: 本发明提供一种凸轮轴盖加工装置,涉及智能加工技术领域。其包括工作台装置、定位装置、动力装置和卸料装置,所述工作台装置包括旋转工作台和设置于旋转工作台顶部的固定工装组件,所述旋转工作台设置有定位槽,所述固定工装组件包括与加工零件耦合的固定头;所述定位装置包括定位销和驱动所述定位销与所述定位槽相嵌合的定位气缸;所述动力装置包括驱动所述旋转工作台周期性运转的驱动电机;所述卸料装置包括接料组件、卸料气缸和与所述卸料气缸连接的装夹头,所述接料组件与所述装夹头沿所述旋转工作台的径向相对设置。本发明的有益效果在于,该凸轮轴盖智能加工装置结构简单、紧凑,高效且能耗低,减少企业运营成本。
-
公开(公告)号:CN108646670B
公开(公告)日:2020-01-03
申请号:CN201810321840.6
申请日:2018-04-11
申请人: 华中科技大学 , 襄阳华中科技大学先进制造工程研究院
IPC分类号: G05B19/404
摘要: 本发明属于数控机床温度监控与预测领域,并具体公开了一种数控机床部件温度实时预测方法,该方法包括如下步骤:实时采集数控机床的传感器信号并进行预处理;根据预处理后的信号数据计算从ti‑1时刻到ti时刻的由内部热源引起的机床部件温度变化量和由环境温度引起的机床部件温度变化量叠加和得到机床部件从ti‑1时刻到ti时刻的最终温度变化量ΔT;实时预测数控机床部件的温度:Ti=Ti‑1+ΔT。本发明具有预测速度快、准确率高的优点,同时使用简单方便,且不改变数控机床的机械结构、不影响数控机床的动态特性,可实现机床部件温度的实时预测。
-
公开(公告)号:CN108981612B
公开(公告)日:2019-09-24
申请号:CN201810421589.0
申请日:2018-05-04
申请人: 华中科技大学 , 襄阳华中科技大学先进制造工程研究院
IPC分类号: G01B11/26
摘要: 本发明属于机床误差测量相关技术领域,其公开了一种基于双激光干涉仪的机床垂直轴滚动角误差测量方法,该方法包括以下步骤:(1)提供两个激光干涉仪,两个所述激光干涉仪分别设置在机床的主轴箱相背的两侧;(2)调整所述激光干涉仪的位置及姿态进行对光;(3)操作所述机床及所述激光干涉仪进行测量并记录数据,进而建立所述机床垂直轴滚动角误差的数学模型;(4)将测量数据带入所述数学模型以求解得到各个测点的滚动角误差值,并采用线性插值法求得所述主轴箱的整个测量行程内的滚动角误差,进而求得所述机床垂直轴滚动角误差。本发明在辨识滚动角误差的同时一次性测出垂直轴的全部六项误差值,降低了成本,简便高效,测量精度较高。
-
公开(公告)号:CN106524908A
公开(公告)日:2017-03-22
申请号:CN201610905907.1
申请日:2016-10-17
申请人: 湖北文理学院 , 襄阳华中科技大学先进制造工程研究院 , 华中科技大学
IPC分类号: G01B11/00
CPC分类号: G01B11/002
摘要: 本发明公开了一种机床全行程空间误差的测量方法,包括如下步骤:(1)根据机床各轴行程及各轴测量数据点的要求确定测量间距ΔL,根据ΔL确定机床空间测量点数,并规划测量路径;行到X、Y、Z轴坐标0处;(3)根据规划的测量路径以线、面、空间的测量顺序测量机床全行程空间内所有面上点的误差:(4)根据机床全行程空间内已测量点的误差求解机床全行程空间任意位置点的误差。本发明通过仪器一次安装对光就可以实现机床全行程空间误差的测量,测量快速,将误差值应用于数控系统进行实时补偿,具有运算量小、精度高等优点。(2)安装机床各部件并进行对光,然后将机床运
-
公开(公告)号:CN109605157B
公开(公告)日:2019-11-12
申请号:CN201811459512.9
申请日:2018-11-30
申请人: 华中科技大学 , 襄阳华中科技大学先进制造工程研究院 , 苏州华数机器人有限公司
摘要: 本发明属于自动化加工领域,并具体公开了一种基于3D激光扫描仪的机器人去毛刺方法,包括如下步骤:机器人抓取调试工件按照预设轨迹在3D激光扫描仪视野范围内运动获取调试工件轮廓点云数据Pri;调试工件运动至刀具处进行示教编程获得去毛刺轨迹点坐标Pj;采用同样方式抓取待清理工件在3D激光扫描仪视野范围内运动,获取待清理工件点云数据Pwi;将Pri和Pwi转换至机器人末端坐标系下并配准获取位置偏差矩阵T和姿态偏差矩阵R;利用T和R对Pj进行修正,获得修正后的去毛刺轨迹点坐标Pj′;机器人根据Pj′夹持待清理工件相对刀具运动实现去毛刺处理。本发明具有自动化程度较高、零件去毛刺后一致性好、提高去毛刺效率和合格率、减少粉尘对环境污染等优点。
-
-
-
-
-
-
-
-
-