一种基于多通道卷积神经网络的次季节台风生成预报方法

    公开(公告)号:CN115857062B

    公开(公告)日:2023-06-13

    申请号:CN202310174997.1

    申请日:2023-02-28

    IPC分类号: G01W1/10 G06N3/0464 G06N3/096

    摘要: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。

    一种基于LA-UNET-LSTM的次季节降水预报方法

    公开(公告)号:CN118277767A

    公开(公告)日:2024-07-02

    申请号:CN202410614990.1

    申请日:2024-05-17

    摘要: 本发明公开了一种基于LA‑UNET‑LSTM的次季节降水预报方法,包括:采集数值模式输出的降水和多气象要素预报数据、实际降水观测数据,并将数据划分成训练集、验证集和测试集;基于训练集数据提取降水可预报模态的特征序列,诊断分析其在数值模式中的可预报性来源,并提取特征掩膜场;搭建LA‑UNET‑LSTM神经网络,构建基于结构相似性和加权均方差的损失函数;对数据进行标准化处理,配合特征掩膜场构建预报因子特征图,基于训练集数据对模型展开训练,并根据模型验证集中表现调整模型参数;将测试集中的预报因子特征图带入训练好的模型,同时得到未来1‑4周的降水预报数据。本发明有效提高了计算效率和极端降水的预报技巧。