-
公开(公告)号:CN115508314B
公开(公告)日:2024-06-18
申请号:CN202211163318.2
申请日:2022-09-23
申请人: 南京农业大学
IPC分类号: G01N21/55
摘要: 本发明提出一种基于冠层组分光谱分离的土壤影响消除与小麦叶片叶绿素含量高精度估算方法,包括以下步骤:提取小麦冠层反射光谱特征波段的反射率,利用两个特征波段模拟土壤组分的光谱信号,剔除土壤组分得到小麦组分光谱信号,计算植被指数估算小麦叶片叶绿素含量。本发明的方法通过对小麦和土壤反射光谱进行特征分析,分离出土壤和植被光谱的信号,减少土壤背景对叶片叶绿素含量估算的影响,该方法操作步骤简单,运算速度快,适用于冠层水平不同小麦品种、不同栽培处理、不同生育时期,可广泛用于小麦冠层水平的平均叶片叶绿素含量监测。
-
公开(公告)号:CN112613338B
公开(公告)日:2023-11-24
申请号:CN202011303935.9
申请日:2020-11-19
申请人: 南京农业大学
IPC分类号: G06V20/10 , G06V20/17 , G06V10/44 , G06V10/54 , G06V10/56 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06V20/68 , G06N3/006 , G06N3/0464 , G01N21/17 , G01N21/84
摘要: 本发明提出基于RGB图像融合特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层RGB图像和实测小麦叶层氮含量;首先,进行RGB图像预处理,计算可见光植被指数;其次,利用离散小波变换方法实现水平方向、垂直方向和对角方向的多尺度小波纹理特征提取;再次,利用卷积神经网络提取RGB图像深层特征;最后,构建基于融合特征的粒子群优化支持向量回归模型估测小麦叶层氮含量。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前
-
公开(公告)号:CN116486034A
公开(公告)日:2023-07-25
申请号:CN202211499179.0
申请日:2023-01-28
申请人: 南京农业大学
IPC分类号: G06T17/20 , G06T7/136 , G06V10/762
摘要: 本发明公开了一种田间小麦穗数提取方法,包括步骤:步骤1、采集小麦穗数样本和点云;步骤2、对从步骤1得到的小麦点云进行预处理;步骤3、选取任意点进行最小二乘曲面拟合,并获取该点所在平面的法向量;步骤4、计算点云法线差异度,分割茎或穗点云;步骤5、通过密度聚类进行茎或穗点云聚类:步骤6、根据聚类结果,统计小区内穗数。本发明方法提取的小麦穗数与田间实测的穗数进行比较,验证了算法的可行性,说明本发明方法实现了对大田作物穗数的快速、准确、无损提取,同时具有较高的普适性,为田间小麦穗数的提取提供了理论基础和技术支撑。
-
公开(公告)号:CN116469019A
公开(公告)日:2023-07-21
申请号:CN202310400046.1
申请日:2023-04-14
申请人: 南京农业大学
IPC分类号: G06V20/17 , G06V20/10 , G06V10/26 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
摘要: 本发明公开了一种基于全卷积神经网络的田间小区自动分割方法,该方法基于无人机遥感平台获取小麦育种试验的无人机影像,构建全卷积神经网模型,在模型中引入注意力机制用于平衡数据集中类别分布不均衡的情况,之后使用图像细化以及直线检测等后处理算法对全卷积神经网络得到的边界提取结果行进一步的改进和完善,最后将训练好的全卷积神经网络模型和后处理算法部署至电脑端实现Windows操作系统下的育种小区边界提取系统,实现一套系统化、自动化的育种小区边界提取流程。本发明能够有效地缓解传统方法因小区内部阴影和杂草等原因造成的误分类现象,适用于基于无人机平台获取的遥感影像的育种试验边界提取问题。
-
公开(公告)号:CN115508314A
公开(公告)日:2022-12-23
申请号:CN202211163318.2
申请日:2022-09-23
申请人: 南京农业大学
IPC分类号: G01N21/55
摘要: 本发明提出一种基于冠层组分光谱分离的土壤影响消除与小麦叶片叶绿素含量高精度估算方法,包括以下步骤:提取小麦冠层反射光谱特征波段的反射率,利用两个特征波段模拟土壤组分的光谱信号,剔除土壤组分得到小麦组分光谱信号,计算植被指数估算小麦叶片叶绿素含量。本发明的方法通过对小麦和土壤反射光谱进行特征分析,分离出土壤和植被光谱的信号,减少土壤背景对叶片叶绿素含量估算的影响,该方法操作步骤简单,运算速度快,适用于冠层水平不同小麦品种、不同栽培处理、不同生育时期,可广泛用于小麦冠层水平的平均叶片叶绿素含量监测。
-
公开(公告)号:CN114694036A
公开(公告)日:2022-07-01
申请号:CN202210267472.8
申请日:2022-03-18
申请人: 南京农业大学 , 神农智慧农业研究院南京有限公司
摘要: 本发明公开了一种基于高分影像和机器学习的高海拔地区作物分类识别的方法,该方法使用国产GF6‑PMS卫星影像,结合光谱、纹理、植被指数及地形因子等特征,通过基于随机森林的递归特征消除策略筛选出最优特征组合,并计算Gini指数获得各输入特征的重要性得分,进一步利用两层堆叠驱动的集成分类模型(包含Random Forest、XGBoost和AdaBoost三个单一分类器模型)对高海拔地区作物进行分类识别。本发明基于最优特征组合(Green、Red、NIR、TVI、GNDVI、Blue_Mean、Green_Mean、Red_Mean、NIR_Mean、DEM)构建的Stacking模型可以在较大程度上改善高海拔地区农作物的分类识别精度,尤其是种植面积较大的大宗作物的分类识别精度,为国产高分卫星影像在高海拔地区进行农作物遥感识别提供了科学参考依据。
-
公开(公告)号:CN112613338A
公开(公告)日:2021-04-06
申请号:CN202011303935.9
申请日:2020-11-19
申请人: 南京农业大学
摘要: 本发明提出基于RGB图像融合特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层RGB图像和实测小麦叶层氮含量;首先,进行RGB图像预处理,计算可见光植被指数;其次,利用离散小波变换方法实现水平方向、垂直方向和对角方向的多尺度小波纹理特征提取;再次,利用卷积神经网络提取RGB图像深层特征;最后,构建基于融合特征的粒子群优化支持向量回归模型估测小麦叶层氮含量。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前第一次提出综合RGB图像的可见光植被指数、小波纹理特征、优选的深层特征构建融合特征来估测小麦叶层氮含量的方法。
-
公开(公告)号:CN106772427B
公开(公告)日:2019-07-16
申请号:CN201611116173.5
申请日:2016-12-07
申请人: 南京农业大学
IPC分类号: G01S17/89
摘要: 本发明公开了一种基于连续小波分析的冠层高光谱小麦叶干重监测方法,该方法的步骤如下:选定采样小区,获取小麦冠层高光谱反射率、测定小麦叶干重;采样小区采自不同试验点、不同品种、不同施氮水平、不同种植密度和不同年份;对获得的小麦冠层高光谱反射率数据进行连续小波变换,获得特定波长和特定尺度下的小波系数C;利用获得的小波系数,分析小麦叶干重与小波系数的定量关系,筛选出对小麦叶干重敏感的最佳小波函数及最佳小波函数对应的特征值,并构建基于连续小波分析的小麦叶干重定量模型;使用独立小麦试验数据评估定量模型的可靠性和适用性,采用预测值和观测值之间的决定系数R2和相对均方根差RRMSE对定量模型进行评价。
-
公开(公告)号:CN109978047A
公开(公告)日:2019-07-05
申请号:CN201910223270.1
申请日:2019-03-22
申请人: 南京农业大学
摘要: 本发明公开了一种田间小麦茎蘖数提取方法,通过激光雷达获取田间小麦点云,提取研究区任意一行小麦点云,将Y轴投影到一个平面,保留X轴和Z轴,应用自适应分层,获得该行小麦的簇数;应用层次聚类分析,获得每簇小麦的分蘖数,进一步获得整行小麦的茎蘖数,从而提取田间小麦茎蘖数。本发明方法提取的小麦茎蘖数与田间实测的茎蘖数进行比较,验证了算法的可行性,说明本发明方法实现了对大田作物茎蘖数的快速、准确、无损提取,同时具有较高的普适性,为田间小麦茎蘖数的提取提供了理论基础和技术支撑。
-
公开(公告)号:CN106872383A
公开(公告)日:2017-06-20
申请号:CN201710205193.8
申请日:2017-03-31
申请人: 南京农业大学
IPC分类号: G01N21/31
CPC分类号: G01N21/3103
摘要: 本发明提出一种基于连续小波分析的水稻反射光谱红边位置提取方法,包括以下步骤:分别测量水稻的叶片单叶和冠层的反射光谱及相对应的叶绿素含量;对反射光谱进行预处理,获得小波系数;在680nm~750nm光谱区间提取出小波系数光谱的零点,定义该零点对应的光谱位置为红边位置。本发明的方法通过对水稻叶片和冠层的反射光谱进行连续小波变换,基于获得的小波系数提取出红边位置,该方法操作步骤简单,运算速度快,适用于不同水稻品种、不同栽培处理、不同生育时期的叶片和冠层水平,可广泛用于监测水稻叶片和冠层叶绿素含量。
-
-
-
-
-
-
-
-
-