一种基于拓扑优化的无人机集群联邦学习模型优化方法

    公开(公告)号:CN116582871A

    公开(公告)日:2023-08-11

    申请号:CN202310828232.5

    申请日:2023-07-07

    摘要: 本发明公开了一种基于拓扑优化的无人机集群联邦学习模型优化方法,本发明面向无人机集群,根据带宽分配、计算时延、通信时延以及拓扑设计的约束条件,最小化无人机集群联邦学习每一轮的能量消耗和时延的加权和;进而获得每一轮无人机集群对应的关于模型参数传输的拓扑结构,基于拓扑结构,各跟随无人机的本地联邦学习模型参数传输至领头无人机;领头无人机进行参数聚合并更新,获得下一轮迭代中的全局联邦学习模型参数,当全局联邦学习模型参数对应的联邦学习模型精度达到要求,则获得无人机集群对应的联邦学习模型。本发明显著加快联邦学习过程,大大提高了无人机集群联邦学习的鲁棒性,使联邦学习能够更好地适应网络拓扑高动态的无人机集群。

    一种基于GNN的半联邦学习系统及其运行方法

    公开(公告)号:CN117592556A

    公开(公告)日:2024-02-23

    申请号:CN202410069642.0

    申请日:2024-01-18

    IPC分类号: G06N3/098 G06N3/042

    摘要: 本发明属于联邦学习和边缘计算技术领域,公开了一种基于GNN的半联邦学习系统及其运行方法,系统包括云端服务中心、多个边缘服务器与终端设备,边缘服务器与云端服务中心之间存在双向的连接,边缘服务器和终端设备之间存在双向的链路,边缘服务器用于分析需要上传本地数据的终端设备,下发传输决策,确定本地训练的终端设备后,接收实行本地训练的终端设备上传的模型参数用于聚合;同时接收无法进行本地训练的终端设备发送的本地数据,进行去重处理后再进行模型训练,将得到的模型参数用于聚合,并聚合后的模型参数上传至所述云端服务中心。本发明提升了系统的包容性和模型的性能,解决了重复数据训练造成的模型过拟合问题。

    一种去中心化联邦学习系统、方法、存储介质及计算设备

    公开(公告)号:CN116341691A

    公开(公告)日:2023-06-27

    申请号:CN202310534928.7

    申请日:2023-05-12

    IPC分类号: G06N20/20

    摘要: 本发明公开了一种去中心化联邦学习系统、方法、存储介质及计算设备,该系统包括:模型共享平面、与模型共享平面连接的边缘服务器,以及与边缘服务器连接的参与训练的终端设备;本发明基于终端设备资源信息进行全局模型分割,平衡各终端设备进行本地模型训练的时间差异,且分割策略会随着终端设备本地资源进行调整,保证每一次都选择最早训练完成时间最小的方案,可提高训练吞吐量、降低通信成本,从而加快训练进程。

    一种基于拓扑优化的无人机集群联邦学习模型优化方法

    公开(公告)号:CN116582871B

    公开(公告)日:2023-10-13

    申请号:CN202310828232.5

    申请日:2023-07-07

    摘要: 本发明公开了一种基于拓扑优化的无人机集群联邦学习模型优化方法,本发明面向无人机集群,根据带宽分配、计算时延、通信时延以及拓扑设计的约束条件,最小化无人机集群联邦学习每一轮的能量消耗和时延的加权和;进而获得每一轮无人机集群对应的关于模型参数传输的拓扑结构,基于拓扑结构,各跟随无人机的本地联邦学习模型参数传输至领头无人机;领头无人机进行参数聚合并更新,获得下一轮迭代中的全局联邦学习模型参数,当全局联邦学习模型参数对应的联邦学习模型精度达到要求,则获得无人机集群对应的联邦学习模型。本发明显著加快联邦学习过程,大大提高了无人机集群联邦学习的鲁棒性,使联邦学习能够更好地适应网络拓扑高动态的无人机集群。

    一种去中心化联邦学习系统、方法、存储介质及计算设备

    公开(公告)号:CN116341691B

    公开(公告)日:2023-09-22

    申请号:CN202310534928.7

    申请日:2023-05-12

    IPC分类号: G06N20/20

    摘要: 本发明公开了一种去中心化联邦学习系统、方法、存储介质及计算设备,该系统包括:模型共享平面、与模型共享平面连接的边缘服务器,以及与边缘服务器连接的参与训练的终端设备;本发明基于终端设备资源信息进行全局模型分割,平衡各终端设备进行本地模型训练的时间差异,且分割策略会随着终端设备本地资源进行调整,保证每一次都选择最早训练完成时间最小的方案,可提高训练吞吐量、降低通信成本,从而加快训练进程。

    一种基于区块链的联邦学习优化方法

    公开(公告)号:CN117610644B

    公开(公告)日:2024-04-16

    申请号:CN202410077654.8

    申请日:2024-01-19

    IPC分类号: G06N3/098 G06N3/045 G06F9/50

    摘要: 本发明公开了一种基于区块链的联邦学习优化方法,在基于区块链的联邦学习下,基于深度强化学习的数据卸载控制策略,控制用户设备选择将数据传输到边缘节点进行模型训练或者在本地进行模型更新;基于深度强化学习的数据卸载控制策略包括:定义数据卸载控制策略的状态、动作和奖励函数,利用双重深度Q网络算法选择当前状态下的最优动作;当最优动作为在本地训练模型时,控制用户设备在本地进行模型更新;当最优动作为在边缘节点训练模型时,根据数据卸载上传比例将用户设备的数据传输到边缘节点,在边缘节点进行模型训练。本发明能够增加边缘服务器在整个模型训练过程的比重,加速区块链网络中的联邦学习模型训练过程。

    一种动态通信环境下的客户端调度方法

    公开(公告)号:CN117692939B

    公开(公告)日:2024-04-12

    申请号:CN202410149801.8

    申请日:2024-02-02

    摘要: 本发明属于动态通信环境下的客户端调度技术领域,涉及一种动态通信环境下的客户端调度方法;将所有客户端都进行本地模型训练,然后基于客户端训练的状态(通信延迟、资源能耗)定义客户端的状态向量,再结合客户端的两个动作状态选择性能最优的一批客户端;根据客户端的状态向量和动作空间定义客户端可用性,再选择一组客户端上传本地模型进行全局聚合,本发明状态向量是根据客户端的实时状态进行动态调整和适应,这使得系统能够根据客户端的实际情况做出更合理的决策,最大效率的选择合适的客户端参与模型聚合,客户端可用性可以更准确的评估每个客户端的性能和可参与度,提高模型训练的精度和效率。

    一种基于GNN的半联邦学习系统及其运行方法

    公开(公告)号:CN117592556B

    公开(公告)日:2024-03-26

    申请号:CN202410069642.0

    申请日:2024-01-18

    IPC分类号: G06N3/098 G06N3/042

    摘要: 本发明属于联邦学习和边缘计算技术领域,公开了一种基于GNN的半联邦学习系统及其运行方法,系统包括云端服务中心、多个边缘服务器与终端设备,边缘服务器与云端服务中心之间存在双向的连接,边缘服务器和终端设备之间存在双向的链路,边缘服务器用于分析需要上传本地数据的终端设备,下发传输决策,确定本地训练的终端设备后,接收实行本地训练的终端设备上传的模型参数用于聚合;同时接收无法进行本地训练的终端设备发送的本地数据,进行去重处理后再进行模型训练,将得到的模型参数用于聚合,并聚合后的模型参数上传至所述云端服务中心。本发明提升了系统的包容性和模型的性能,解决了重复数据训练造成的模型过拟合问题。