-
公开(公告)号:CN110610232A
公开(公告)日:2019-12-24
申请号:CN201910855977.4
申请日:2019-09-11
Applicant: 南通大学
Abstract: 本发明公开了一种基于深度学习的长期及短期交通流预测模型构建方法,即长期和短期时间序列网络,使用卷积神经网络和递归神经网络来提取变量之间的短期局部依赖模式,并发现时间序列趋势的长期模式。本发明通过结合卷积和递归神经网络的强度和自回归分量,该方法显著地改进了对多个基准数据集的时间序列预测的最新结果。通过深入的分析和实证研究,我们展示了LSTNet模型体系结构的效率,并成功地捕捉了数据中的短期和长期重复模式,并将线性模型和非线性模型结合起来进行鲁棒性预测。