基于惩罚机制的代价敏感序贯三支阴影膀胱炎分类方法

    公开(公告)号:CN115985489A

    公开(公告)日:2023-04-18

    申请号:CN202211484624.6

    申请日:2022-11-24

    申请人: 南通大学

    摘要: 本发明提供了基于惩罚机制的代价敏感序贯三支阴影膀胱炎分类方法,属于膀胱炎患者进行分类技术领域;其技术方案为:根据条件属性的重要性将其降序排序;其次顺序计算每个膀胱炎数据对象的隶属度,对膀胱炎数据对象进行阴影化处理,阴影域作为膀胱炎数据下一个粒度的论域;然后计算膀胱炎数据相邻两个粒度之间的两种精度差异,通过惩罚函数对膀胱炎数据的代价参数进行修改,从而确定新的阴影集阈值;如果膀胱炎数据最后一个粒度的阴影域不为空,则对其阴影集阈值进行加权求和得到新的阈值对阴影域进行分类。本发明的有益效果为:本发明分类精度好,为膀胱炎诊断提供决策支持,提高患者就医满意度。

    用于大规模认知障碍疾病检测的动态加权属性约简方法

    公开(公告)号:CN116759069B

    公开(公告)日:2024-07-23

    申请号:CN202310651001.1

    申请日:2023-06-02

    申请人: 南通大学

    摘要: 本发明提供了一种用于大规模认知障碍疾病检测的动态加权属性约简方法,属于医学信息智能处理技术领域,传统方法在处理大规模数据处理时间较长,复杂的认知障碍疾病特征选择中会导致不确定性的技术问题。其技术方案为:包括以下步骤:S1、大规模认知障碍疾病数据获取与预处理;S2、计算认知障碍疾病原始数据和增量数据的知识粒度;S3、构建动态特征交互加权属性树;S4、将构建的动态特征交互加权属性树分支,每轮分支结束时将低权重属性添加到交互集F中进行增量特征交互;S5、在所有属性树完成分支后,将计算节点约简集输出到主节点,获得大规模认知障碍疾病数据约简。本发明的有益效果为:可以有效提高特征选择的速度并提高精度。

    基于模糊逻辑的跳跃式注意力肺部病理图像分类方法

    公开(公告)号:CN116452865A

    公开(公告)日:2023-07-18

    申请号:CN202310345231.5

    申请日:2023-04-03

    申请人: 南通大学

    摘要: 本发明提供了一种基于模糊逻辑的跳跃式注意力肺部病理图像分类方法,属于肺部组织病理图像分类技术领域,解决了相似形态和结构下复杂肺部病理组织图像分类准确率低的技术问题。其技术方案为:先从肺部病理图像数据集中连续读取RGB病理图像,构建基于模糊逻辑的隶属函数和非隶属函数,对肺部病理图像数据进行模糊处理;再次构建跳跃式多头自注意力算法,通过将前半部分的特征按规则连接到后半部分的特征中,提取肺部病理图像特征;根据模糊规则去模糊化得到的数据,并输入多层感知机,得到每种分类的概率分布,取概率最高的作为最终分类结果。本发明的有益效果为:为肺部组织病理图像的分类提供决策支持,提升病理医生工作效率。

    基于模糊超盒质量感知神经网络的精神分裂症分类方法

    公开(公告)号:CN118447304A

    公开(公告)日:2024-08-06

    申请号:CN202410547182.8

    申请日:2024-05-06

    申请人: 南通大学

    摘要: 本发明提供了基于模糊超盒质量感知神经网络的精神分裂症分类方法,属于智能医学处理技术领域,解决了精神分裂症患者动态脑网络多个时间窗口数据质量不一致的问题;其技术方案为:利用三个特殊的卷积滤波器提取精神分裂症患者动态脑网络每个时间窗口的特征,然后通过全连接层和激活层以获得证据;将多视图证据作为输入构造多视图模糊最小最大神经网络分类器,输出每个视图的类节点;使用证据理论直接建模不确定性,计算每个视图的质量感知权重以评估每个视图的分类可信度;根据每个视图的质量感知权重集成多个视图的类节点以得到最终诊断结果。本发明的有益效果为:本发明分类精度较好,为精神分裂症诊断提供决策支持,提高患者就医满意度。

    基于模糊逻辑的跳跃式注意力肺部病理图像分类方法

    公开(公告)号:CN116452865B

    公开(公告)日:2023-11-07

    申请号:CN202310345231.5

    申请日:2023-04-03

    申请人: 南通大学

    摘要: 本发明提供了一种基于模糊逻辑的跳跃式注意力肺部病理图像分类方法,属于肺部组织病理图像分类技术领域,解决了相似形态和结构下复杂肺部病理组织图像分类准确率低的技术问题。其技术方案为:先从肺部病理图像数据集中连续读取RGB病理图像,构建基于模糊逻辑的隶属函数和非隶属函数,对肺部病理图像数据进行模糊处理;再次构建跳跃式多头自注意力算法,通过将前半部分的特征按规则连接到后半部分的特征中,提取肺部病理图像特征;根据模糊规则去模糊化得到的数据,并输入多层感知机,得到每种分类的概率分布,取概率最高的作为最终分类结果。本发明的有益效果为:为肺部组织病理图像的分类提供决策支持,提升病理医生工作效率。

    信息素引导粗糙超立方体的高维大规模并行属性约简方法

    公开(公告)号:CN117829198A

    公开(公告)日:2024-04-05

    申请号:CN202410006813.5

    申请日:2024-01-03

    申请人: 南通大学

    IPC分类号: G06N3/006

    摘要: 本发明提供了一种信息素引导粗糙超立方体的高维大规模并行属性约简方法,属于智能信息处理技术领域。其技术方案为:利用Spark读取高维大规模数据并转换为RDD格式;初始化信息素矩阵,构建粗糙超立方体模型;并行计算属性的评价指标并综合计算适应度得分;迭代循环,每次迭代根据适应度得分更新信息素矩阵;根据信息素矩阵更新狼群的位置;达到最大迭代次数,将最佳适应度的个体位置编码转换成属性子集。本发明利用信息素机制引导灰狼算法,结合粗糙超立方体方法,有效地处理和分析大规模、多维度的数据,得到紧凑且高具辨别力的属性子集。

    基于协同进化离散粒子群优化的糖尿病并行属性约简方法

    公开(公告)号:CN117059284A

    公开(公告)日:2023-11-14

    申请号:CN202311031910.1

    申请日:2023-08-16

    申请人: 南通大学

    摘要: 本发明提供了一种基于协同进化离散粒子群优化的糖尿病并行属性约简方法,属于医学电子病例技术领域。解决了糖尿病症电子病历数据维度大、冗余多,导致医生判断错误的技术问题。其技术方案为:包括以下步骤:S1:将糖尿病症数据存放到分布式文件系统中;S2:计算机节点读取HDFS中block块的数据;S3:主节点得到汇总的数据键值对后;S4:主节点将进行步骤S3操作所得的 键值对数据广播到各个子节点;S5:主节点对得到的属性评价函数结合CQBPSO算法进行建模。本发明的有益效果为:本发明结合粗糙集理论和Spark分布式计算平台,能够从糖尿病症数据集中筛选出最具代表性和关键性的属性。

    用于大规模认知障碍疾病检测的动态加权属性约简方法

    公开(公告)号:CN116759069A

    公开(公告)日:2023-09-15

    申请号:CN202310651001.1

    申请日:2023-06-02

    申请人: 南通大学

    摘要: 本发明提供了一种用于大规模认知障碍疾病检测的动态加权属性约简方法,属于医学信息智能处理技术领域,传统方法在处理大规模数据处理时间较长,复杂的认知障碍疾病特征选择中会导致不确定性的技术问题。其技术方案为:包括以下步骤:S1、大规模认知障碍疾病数据获取与预处理;S2、计算认知障碍疾病原始数据和增量数据的知识粒度;S3、构建动态特征交互加权属性树;S4、将构建的动态特征交互加权属性树分支,每轮分支结束时将低权重属性添加到交互集F中进行增量特征交互;S5、在所有属性树完成分支后,将计算节点约简集输出到主节点,获得大规模认知障碍疾病数据约简。本发明的有益效果为:可以有效提高特征选择的速度并提高精度。