-
公开(公告)号:CN115572961B
公开(公告)日:2023-05-23
申请号:CN202211287117.3
申请日:2022-10-20
申请人: 哈尔滨工业大学 , 黑龙江省工业技术研究院
IPC分类号: C23C16/511 , C23C16/27
摘要: 一种微波辅助气压浸渗制备高热导率金刚石/金属基复合材料的方法,涉及一种高热导率金刚石/金属基复合材料的制备方法。为了解决现有气压浸渗方法制备金刚石金属基复合材料反应时间长、工艺繁琐、所制备样件表面质量差的问题。方法:在金刚石颗粒表面均匀镀覆金属镀层,利用微波发生装置产生的电磁场处理镀覆有金属镀层的金刚石颗粒,之后利用电加热体加热块状基体金属至熔点以上,通入惰性气体进行气压浸渗,气压浸渗结束后进行保压阶梯式冷却。本发明界面调控的时间0.1s~1s,真空中金刚石颗粒表面的金属镀层在电磁场中运动发生放电生成界面碳化物,实现了金刚石与基体金属的润湿性改变,实现不使用脱模剂即可脱模,反应程度容易控制。
-
公开(公告)号:CN115572961A
公开(公告)日:2023-01-06
申请号:CN202211287117.3
申请日:2022-10-20
申请人: 哈尔滨工业大学 , 黑龙江省工业技术研究院
IPC分类号: C23C16/511 , C23C16/27
摘要: 一种微波辅助气压浸渗制备高热导率金刚石/金属基复合材料的方法,涉及一种高热导率金刚石/金属基复合材料的制备方法。为了解决现有气压浸渗方法制备金刚石金属基复合材料反应时间长、工艺繁琐、所制备样件表面质量差的问题。方法:在金刚石颗粒表面均匀镀覆金属镀层,利用微波发生装置产生的电磁场处理镀覆有金属镀层的金刚石颗粒,之后利用电加热体加热块状基体金属至熔点以上,通入惰性气体进行气压浸渗,气压浸渗结束后进行保压阶梯式冷却。本发明界面调控的时间0.1s~1s,真空中金刚石颗粒表面的金属镀层在电磁场中运动发生放电生成界面碳化物,实现了金刚石与基体金属的润湿性改变,实现不使用脱模剂即可脱模,反应程度容易控制。
-
公开(公告)号:CN118703143A
公开(公告)日:2024-09-27
申请号:CN202410729411.8
申请日:2024-06-06
申请人: 哈尔滨工业大学
IPC分类号: C09J163/00 , C09J11/04 , C01G45/00 , B82Y40/00 , B02C17/10 , B01F33/45 , B01F101/36
摘要: 一种基于Mn3Zn0.55Sn0.25Mn0.2N的高强度低膨胀复合环氧胶粘剂的制备方法,涉及一种复合环氧胶粘剂的制备方法。为了解决现有的环氧胶粘剂与金属的热膨胀系数相差较大的问题。本发明制备的表面改性后的Mn3Zn0.55Sn0.25Mn0.2N的质量分数为10‑40%;本发明使用改性剂正十二醇提高了Mn3Zn0.55Sn0.25Mn0.2N的疏水性和在有机溶剂中充分分散,改性剂改性的Mn3Zn0.55Sn0.25Mn0.2N制备的复合环氧胶粘剂粘结强度高,解决了与金属的热膨胀系数相差较大的问题。可以根据不同的应用场景增强体的体积分数来得到不同线膨胀系数的胶粘剂。
-
公开(公告)号:CN118406924A
公开(公告)日:2024-07-30
申请号:CN202410497975.3
申请日:2024-04-24
申请人: 哈尔滨工业大学
摘要: 一种高熵合金‑碳复合吸波材料的制备方法,涉及一种吸波材料的制备方法。为了解决现有的高熵合金材料用作吸波材料因密度大导致阻抗失配的问题,以及现有的高熵合金泡沫的制备方法存在制备工艺要求高、制备流程繁琐、周期较长的问题。本发明采用马弗炉加热或采用微波加热可以短时快速升温至较高的温度的特点获得产物具有泡沫状多孔结构,解决了高熵合金材料用作吸波材料因密度大导致阻抗失配的问题,高熵合金元素本征具备的磁性能贡献磁损耗机制对于复合吸波材料是起到重要作用的,与碳复合也能一定程度上减小复合材料的密度且贡献部分介电损耗机制。
-
公开(公告)号:CN111351357B
公开(公告)日:2024-07-05
申请号:CN202010103012.2
申请日:2020-02-19
申请人: 哈尔滨工业大学
IPC分类号: F27B17/02 , B22D23/04 , C22C1/10 , C22C9/00 , C22C21/00 , C22C26/00 , C22C47/08 , C22C49/06 , C22C49/14
摘要: 一种金属基复合材料的高通量制备装置和方法,涉及一种金属基复合材料制备装置及制备方法。它主要解决不同液态金属基体与增强体复合的金属基复合材料高通量制备的问题。装置由提升杆、抽气管、炉体、预热区、熔炼区、网格式坩埚、充气管、预制体安装盘、多个预制体、隔热板、坩埚加热区构成。方法:安装预制体和网格式坩埚、预制体去胶质、气氛保护、真空除气、气压浸渗、成型。本发明可以一次性高通量制备不同材质基体的金属基复合材料,从而可以高效地研究复合材料的界面润湿和界面反应行为,成本低、周期短。本发明适用于高通量制备金属基复合材料。
-
公开(公告)号:CN118222871A
公开(公告)日:2024-06-21
申请号:CN202410327618.2
申请日:2024-03-21
申请人: 哈尔滨工业大学
IPC分类号: C22C1/059 , C22F1/04 , B22F9/04 , B22F1/17 , B22F1/16 , B22F3/26 , B22F3/17 , B22F3/24 , C22C21/00
摘要: 一种各向同性网状石墨烯‑铝复合材料的制备方法,涉及一种石墨烯‑铝复合材料的制备方法。为了实现石墨烯在铝基复合材料中各向同性分布、并解决碳铝界面反应、石墨烯‑铝结合强度低、石墨烯层不连续的问题。本发明通过机械球磨石墨烯通过骨架结构金属的强化学结合紧贴在铝金属粉末表面,利于高含量石墨烯在预制体中的均匀分散,烧结过程中构建的网状连通的骨架结构为石墨烯的应力和热流的传导提供了三维通路,呈现出宏观的各向同性;石墨烯片层之间由骨架结构金属和浸渗的铝金属桥连,有效的保障了应力在石墨烯片层间的充分传导,缓解材料应力集中,有利于实现材料应变均匀化。中骨架结构金属有效的提高了石墨烯‑铝金属基体间的界面结合。
-
公开(公告)号:CN118222866A
公开(公告)日:2024-06-21
申请号:CN202410327619.7
申请日:2024-03-21
申请人: 哈尔滨工业大学
IPC分类号: C22C1/04 , B22F1/145 , B22F1/16 , B22F9/04 , B22F3/14 , B22F3/18 , B22F3/105 , B22F3/20 , C22C21/00 , C22C25/00 , C22C30/00 , C22C30/02 , C22C30/06
摘要: 一种高强界面结合铍铝复合材料的制备方法,涉及一种铍铝复合材料的制备方法。为了解决现有的铍铝复合材料界面强度低和复合材料的致密低的问题。方法:将铍金属粉敏化,然后与液态硅基前驱体混合并进行短时高能球磨获得界面改性层包覆铍颗粒前驱体,再与铝金属粉进行分散、冷压、烧结获得界面改性铍‑铝复合材料铸锭,最后进行变形处理和去应力退火处理。6、本发明制备的高强界面结合铍铝复合材料的综合性能优异,界面结合强度超过900MPa,弯曲强度大于325MPa,屈服强度超过470MPa,抗拉强度超过575MPa,延伸率超过6.6%;制备工艺简单,重复性强,易于大规模生产应用。
-
公开(公告)号:CN118045978A
公开(公告)日:2024-05-17
申请号:CN202410048074.6
申请日:2024-01-12
申请人: 哈尔滨工业大学
摘要: 一种具有预制缺陷的铝基复合材料无损检测标样的制备方法,涉及一种无损检测标样制备方法。为了解决现有制备的复合材料的无损检测标样难以精确定位缺陷位置或易产生不可控制的缺陷的问题。制备方法:在钢模具底部铺SiC粉体振动夯实得到坯体,放置缺陷材料,然后重复数次铺SiC粉体、振动夯实和放置缺陷材料,进行压力浸渗。本发明无损检测标样能够用于根据缺陷材料与铝基复合材料的声速差异来体现缺陷的大小、形状信息。无损检测标样中的模拟缺陷精确模拟复刻了复合材料中存在的真实缺陷,缺陷的深度与大小可调控,采用GCr15钢珠便于精确定位缺陷位置,不会生成不可控制的缺陷,应用于复合材料缺陷的类型识别、缺陷大小的判定以及无损检测设备的标定。
-
公开(公告)号:CN118006972A
公开(公告)日:2024-05-10
申请号:CN202410157792.7
申请日:2024-02-04
申请人: 哈尔滨工业大学
摘要: 一种近连续功能梯度铝基复合材料及其制备方法。本发明属于航空航天减隔振领域,具体涉及一种近连续功能梯度铝基复合材料及其制备方法。本发明目的是为了解决针对低频隔振,传统隔振器无法实现“高静低动”的力学特性的问题。材料由B4C陶瓷颗粒和含铝材料组成。方法:一、近连续功能梯度梁的设计与优化;二、计算好的不同体分混合粉体密铺于模具中;三、冷压预热制备预制体;四、熔融铝液;五、将熔炼的铝液压入预制体中,保压,脱模得到近连续功能梯度铝基复合材料。本发明制备的材料具有优异的低频隔振性能。本发明用于航空航天减隔振领域。
-
公开(公告)号:CN117286360A
公开(公告)日:2023-12-26
申请号:CN202311241845.5
申请日:2023-09-25
申请人: 哈尔滨工业大学
摘要: 一种具有海胆结构的空心微珠增强铝基多孔复合材料的制备方法,涉及一种铝基复合材料的制备方法。为了解决现有多孔复合材料无法同时具备高强度低和高吸能能力的问题。法按:制备表面包覆催化剂的玻璃空心微珠并放入管式炉中进行催化剂还原,然后在玻璃空心微珠表面进行CNTs的沉积得到表面包覆CNTs的具有海胆结构的玻璃空心微珠;玻璃空心微珠置于模具内振实并预热得到预热的预制体,将熔融态的金属基体压力浸渗到预制体。本发明将CNTs引入到多孔复合材料中去得到“玻璃空心微珠‑CNTs‑Al‑CNTs‑玻璃空心微珠”的海胆结构,改变原有的界面载荷传递方式,增加了界面强度,缓解了原有的结构的应力集中现象。峰值应力最高达到148.8MPa,吸能最高达到78.2MJ/m3。
-
-
-
-
-
-
-
-
-