一种微波辅助气压浸渗制备金刚石复合材料的方法

    公开(公告)号:CN115572961B

    公开(公告)日:2023-05-23

    申请号:CN202211287117.3

    申请日:2022-10-20

    IPC分类号: C23C16/511 C23C16/27

    摘要: 一种微波辅助气压浸渗制备高热导率金刚石/金属基复合材料的方法,涉及一种高热导率金刚石/金属基复合材料的制备方法。为了解决现有气压浸渗方法制备金刚石金属基复合材料反应时间长、工艺繁琐、所制备样件表面质量差的问题。方法:在金刚石颗粒表面均匀镀覆金属镀层,利用微波发生装置产生的电磁场处理镀覆有金属镀层的金刚石颗粒,之后利用电加热体加热块状基体金属至熔点以上,通入惰性气体进行气压浸渗,气压浸渗结束后进行保压阶梯式冷却。本发明界面调控的时间0.1s~1s,真空中金刚石颗粒表面的金属镀层在电磁场中运动发生放电生成界面碳化物,实现了金刚石与基体金属的润湿性改变,实现不使用脱模剂即可脱模,反应程度容易控制。

    一种微波辅助气压浸渗制备高热导率金刚石/金属基复合材料的方法

    公开(公告)号:CN115572961A

    公开(公告)日:2023-01-06

    申请号:CN202211287117.3

    申请日:2022-10-20

    IPC分类号: C23C16/511 C23C16/27

    摘要: 一种微波辅助气压浸渗制备高热导率金刚石/金属基复合材料的方法,涉及一种高热导率金刚石/金属基复合材料的制备方法。为了解决现有气压浸渗方法制备金刚石金属基复合材料反应时间长、工艺繁琐、所制备样件表面质量差的问题。方法:在金刚石颗粒表面均匀镀覆金属镀层,利用微波发生装置产生的电磁场处理镀覆有金属镀层的金刚石颗粒,之后利用电加热体加热块状基体金属至熔点以上,通入惰性气体进行气压浸渗,气压浸渗结束后进行保压阶梯式冷却。本发明界面调控的时间0.1s~1s,真空中金刚石颗粒表面的金属镀层在电磁场中运动发生放电生成界面碳化物,实现了金刚石与基体金属的润湿性改变,实现不使用脱模剂即可脱模,反应程度容易控制。

    一种高熵合金-碳复合吸波材料的制备方法

    公开(公告)号:CN118406924A

    公开(公告)日:2024-07-30

    申请号:CN202410497975.3

    申请日:2024-04-24

    IPC分类号: C22C1/08 C22C32/00

    摘要: 一种高熵合金‑碳复合吸波材料的制备方法,涉及一种吸波材料的制备方法。为了解决现有的高熵合金材料用作吸波材料因密度大导致阻抗失配的问题,以及现有的高熵合金泡沫的制备方法存在制备工艺要求高、制备流程繁琐、周期较长的问题。本发明采用马弗炉加热或采用微波加热可以短时快速升温至较高的温度的特点获得产物具有泡沫状多孔结构,解决了高熵合金材料用作吸波材料因密度大导致阻抗失配的问题,高熵合金元素本征具备的磁性能贡献磁损耗机制对于复合吸波材料是起到重要作用的,与碳复合也能一定程度上减小复合材料的密度且贡献部分介电损耗机制。

    一种具有预制缺陷的铝基复合材料无损检测标样的制备方法

    公开(公告)号:CN118045978A

    公开(公告)日:2024-05-17

    申请号:CN202410048074.6

    申请日:2024-01-12

    IPC分类号: B22D23/04 B22D2/00

    摘要: 一种具有预制缺陷的铝基复合材料无损检测标样的制备方法,涉及一种无损检测标样制备方法。为了解决现有制备的复合材料的无损检测标样难以精确定位缺陷位置或易产生不可控制的缺陷的问题。制备方法:在钢模具底部铺SiC粉体振动夯实得到坯体,放置缺陷材料,然后重复数次铺SiC粉体、振动夯实和放置缺陷材料,进行压力浸渗。本发明无损检测标样能够用于根据缺陷材料与铝基复合材料的声速差异来体现缺陷的大小、形状信息。无损检测标样中的模拟缺陷精确模拟复刻了复合材料中存在的真实缺陷,缺陷的深度与大小可调控,采用GCr15钢珠便于精确定位缺陷位置,不会生成不可控制的缺陷,应用于复合材料缺陷的类型识别、缺陷大小的判定以及无损检测设备的标定。

    一种具有海胆结构的空心微珠增强铝基多孔复合材料的制备方法

    公开(公告)号:CN117286360A

    公开(公告)日:2023-12-26

    申请号:CN202311241845.5

    申请日:2023-09-25

    摘要: 一种具有海胆结构的空心微珠增强铝基多孔复合材料的制备方法,涉及一种铝基复合材料的制备方法。为了解决现有多孔复合材料无法同时具备高强度低和高吸能能力的问题。法按:制备表面包覆催化剂的玻璃空心微珠并放入管式炉中进行催化剂还原,然后在玻璃空心微珠表面进行CNTs的沉积得到表面包覆CNTs的具有海胆结构的玻璃空心微珠;玻璃空心微珠置于模具内振实并预热得到预热的预制体,将熔融态的金属基体压力浸渗到预制体。本发明将CNTs引入到多孔复合材料中去得到“玻璃空心微珠‑CNTs‑Al‑CNTs‑玻璃空心微珠”的海胆结构,改变原有的界面载荷传递方式,增加了界面强度,缓解了原有的结构的应力集中现象。峰值应力最高达到148.8MPa,吸能最高达到78.2MJ/m3。