非活性电流谐波结合XGBoost的非侵入式负荷辨识方法

    公开(公告)号:CN114530847B

    公开(公告)日:2024-08-09

    申请号:CN202210170067.4

    申请日:2022-02-23

    Abstract: 本发明公开了非活性电流谐波结合XGBoost的非侵入式负荷辨识方法,包括:利用非侵入式负荷监测系统采集待识别的电力系统负荷稳态电流数据和稳态电压数据,对采集到的稳态电流数据和稳态电压数据中值滤波处理,根据中值滤波后的稳态电流数据和稳态电压数据提取总有功功率特征、总无功功率特征及非活性电流各次谐波分量特征,利用核主成分分析KPCA对非活性电流各次谐波分量特征降维,提取主要谐波信息,与总有功功率特征、总无功功率特征结合形成XGBoost分类模型的多特征目标函数,将提取总有功功率特征、总无功功率特征及非活性电流各次谐波分量特征输入XGBoost分类模型,识别不同的负荷。该方法用于非侵入式负荷辨识,实现了负荷高效且快速准确识。

    基于改进灰狼优化算法的虚拟电厂最大收益方法

    公开(公告)号:CN117574066A

    公开(公告)日:2024-02-20

    申请号:CN202311516168.3

    申请日:2023-11-13

    Abstract: 本发明提出一种基于改进灰狼优化算法的虚拟电厂利润最大化方法,首先S1采集历史数据;S2对采集到的数据进行预处理;S3利用蒙特卡洛优化法进行模拟风光的不确定性;S4利用K‑means算法缩减场景集数至特定的天气,如无风无光,暴雨等;S5根据运行维护成本,卖电收益构建目标函数;S6提出了系统运行约束条件;S7提出改进灰狼优化算法求出电厂最大利润,将利润最大作为算法的求解目标,以运行约束条件作为算法的约束条件。本方法针对灰狼优化算法进行了改进,通过引入非线性调整策略,使收敛因子非线性收敛,增强全局探索能力,提高算法收敛性。还引入自适应柯西变异策略来优化算法,对当前代最优解进行柯西变异操作,提高算法跳出局部最优解的概率。

    基于优化VMD算法和DBN网络的电力负荷分类方法

    公开(公告)号:CN114912545A

    公开(公告)日:2022-08-16

    申请号:CN202210657083.6

    申请日:2022-06-10

    Abstract: 本发明公开了基于优化VMD算法和DBN网络的电力负荷分类方法,其特征在于,包括:获取多个负荷在采样周期内的电力负荷数据,并对电力负荷数据进行预处理;通过优化VMD算法对预处理后的电力负荷数据进行分解,并从分解向量中提取特征向量;将特征向量输入至训练后的DBN神经网络中进行负荷分类;通过该方法可以将优化VMD算法和DBN神经网络相结合,从而实现对用电负荷进行精准分类。

    一种基于灰色关联的DA-LSTM的短期电力负荷预测方法

    公开(公告)号:CN114595873A

    公开(公告)日:2022-06-07

    申请号:CN202210169235.8

    申请日:2022-02-23

    Abstract: 本发明公开了一种基于灰色关联的DA‑LSTM的短期电力负荷预测方法,包括:获取多日日负荷影响因素数据和负荷数据,计算各个日负荷影响因素数据负荷数据之间的MIC值,获得各影响因素的权重,划分历史日数据和待预测日数据,并构建灰色关联判断矩阵,利用各影响因素的权重对灰色关联判断矩阵进行加权,计算出加权灰色关联决策阵,得到每个历史日和待预测日的灰色关联值,将灰色关联值从大到小进行排序,设置阈值,选择满足阈值历史日作为相似日集,构建DA‑LSTM模型,利用将蜻蜓算法DA对长短期记忆网络LSTM的参数进行优化,在DA‑LSTM模型中输入相似日数据,对待预测日进行负荷预测。该方法结合历史负荷、气象、日期类型等因素进行预测,能对待预测日实现短期预测。

    非活性电流谐波结合XGBoost的非侵入式负荷辨识方法

    公开(公告)号:CN114530847A

    公开(公告)日:2022-05-24

    申请号:CN202210170067.4

    申请日:2022-02-23

    Abstract: 本发明公开了非活性电流谐波结合XGBoost的非侵入式负荷辨识方法,包括:利用非侵入式负荷监测系统采集待识别的电力系统负荷稳态电流数据和稳态电压数据,对采集到的稳态电流数据和稳态电压数据中值滤波处理,根据中值滤波后的稳态电流数据和稳态电压数据提取总有功功率特征、总无功功率特征及非活性电流各次谐波分量特征,利用核主成分分析KPCA对非活性电流各次谐波分量特征降维,提取主要谐波信息,与总有功功率特征、总无功功率特征结合形成XGBoost分类模型的多特征目标函数,将提取总有功功率特征、总无功功率特征及非活性电流各次谐波分量特征输入XGBoost分类模型,识别不同的负荷。该方法用于非侵入式负荷辨识,实现了负荷高效且快速准确识。

Patent Agency Ranking