具有三维沟道的复合栅IGBT芯片的制作方法

    公开(公告)号:CN108766885B

    公开(公告)日:2020-09-11

    申请号:CN201810149985.2

    申请日:2018-02-13

    Abstract: 本发明公开了一种具有三维沟道的复合栅IGBT芯片的制作方法,包括:在晶圆基片的上表面形成第一氧化层;对第一氧化层上的第一预设位置进行刻蚀,裸露出下方的晶圆基片;将P型杂质注入到裸露的晶圆基片的第二预设位置,并使其扩散第一结深形成P阱;对P阱上的第三预设位置进行刻蚀,形成沟槽,沟槽深度大于P阱深度;在沟槽内表面以及裸露的晶圆基片上表面形成第二氧化层;在沟槽内以及第一氧化层和第二氧化层上形成多晶硅层,沟槽内的多晶硅填满沟槽;对多晶硅层上的第四预设位置进行刻蚀,裸露出沟槽的沟槽口以及部分P阱上方的第二氧化层。本发明制作方法制成的IGBT芯片既具有较好的耐压性,同时也增大了沟道密度,从而大幅度提升了芯片电流密度。

    一种功率半导体器件超级结终端结构

    公开(公告)号:CN111244151A

    公开(公告)日:2020-06-05

    申请号:CN201811444411.4

    申请日:2018-11-29

    Abstract: 本发明提供一种功率半导体器件超级结终端结构,包括位于衬底上的第一导电类型漂移区,在所述漂移区的表面设置有位于有源区外围的终端区,所述终端区包括在所述漂移区的表面设置的与有源区邻接的第二导电类型起始区和远离有源区的第一导电类型场截止环,在所述起始区与场截止环之间,沿着平行于所述场截止环的方向交替分布若干个第一导电类型掺杂区和第二导电类型掺杂区,其中,所述若干个第一导电类型掺杂区与第二导电类型掺杂区设置成能够在阻断状态时彼此完全耗尽,实现芯片终端体内电场三维均匀分布。通过本发明能够在提高芯片终端耐压的同时减少终端结构所占芯片面积的比例。

    一种沟槽IGBT芯片
    3.
    发明公开

    公开(公告)号:CN109755300A

    公开(公告)日:2019-05-14

    申请号:CN201811435318.7

    申请日:2018-11-28

    Abstract: 本发明公开了一种沟槽IGBT芯片,包括:N型衬底;多个条形沟槽栅极,其沿N型衬底表面延伸且平行分布;多个辅助栅极,其垂直于条形沟槽栅极的长度方向,以将多个条形沟槽栅极之间的区域隔离为多个有源区和多个陪区,有源区和陪区交替排列;其中,有源区设置有N+区、P+区、P阱区和N阱区:陪区未设置N+区、P+区、P阱区和N阱区;发射极金属层,其与N+区和P+区接触。本发明可以通过在沟槽IGBT芯片单胞内有源区和陪区之间引入辅助栅极,从而对有源区和陪区两者间进行有效隔离,避免二者之间工作中相互干扰,进而可以分别对有源区和陪区有针对性设计以实现芯片性能的总体优化。

    沟槽台阶栅IGBT芯片的制作方法

    公开(公告)号:CN108831832A

    公开(公告)日:2018-11-16

    申请号:CN201810426659.1

    申请日:2018-05-07

    Abstract: 本发明公开了一种沟槽台阶栅IGBT芯片的制作方法,包括:在晶圆基片的上表面形成第一氧化层;将N型杂质注入到晶圆基片中,并使其扩散第一结深形成N阱;将P型杂质注入到N阱中,并使其扩散第二结深形成P阱;对第一氧化层上的第一预设位置以及与第一预设位置下方对应的P阱、N阱以及N阱下方晶圆基片进行刻蚀,形成沟槽;去除剩余的第一氧化层,并在P阱上表面和沟槽内表面形成第一厚度的第二氧化层;刻蚀掉P阱上表面和沟槽中的预设沟槽上部内表面的第二氧化层,并在对应的位置形成第二厚度的第三氧化层;在沟槽内填充多晶硅,形成具有台阶形貌的沟槽栅极。本发明实现在提升IGBT芯片电流密度的同时还优化了芯片的电学性能和可靠性。

    具有三维沟道的复合栅IGBT芯片的制作方法

    公开(公告)号:CN108766885A

    公开(公告)日:2018-11-06

    申请号:CN201810149985.2

    申请日:2018-02-13

    Abstract: 本发明公开了一种具有三维沟道的复合栅IGBT芯片的制作方法,包括:在晶圆基片的上表面形成第一氧化层;对第一氧化层上的第一预设位置进行刻蚀,裸露出下方的晶圆基片;将P型杂质注入到裸露的晶圆基片的第二预设位置,并使其扩散第一结深形成P阱;对P阱上的第三预设位置进行刻蚀,形成沟槽,沟槽深度大于P阱深度;在沟槽内表面以及裸露的晶圆基片上表面形成第二氧化层;在沟槽内以及第一氧化层和第二氧化层上形成多晶硅层,沟槽内的多晶硅填满沟槽;对多晶硅层上的第四预设位置进行刻蚀,裸露出沟槽的沟槽口以及部分P阱上方的第二氧化层。本发明制作方法制成的IGBT芯片既具有较好的耐压性,同时也增大了沟道密度,从而大幅度提升了芯片电流密度。

    一种具有过压保护功能的晶闸管及制造方法

    公开(公告)号:CN111599859A

    公开(公告)日:2020-08-28

    申请号:CN201910130201.6

    申请日:2019-02-21

    Abstract: 本发明公开了一种具有过压保护功能的晶闸管及制造方法,晶闸管包括:依次设置的由第一导电类型半导体材料制成的第一导电层、由第二导电类型半导体材料制成的衬底层和由第一导电类型半导体材料制成的第二导电层;在第一导电层的远离衬底层的一面上设置的阳极金属电极;在第二导电层内间隔设置的由第二导电类型半导体材料制成的发射极区;及在第二导电层上对应发射极区分别设置的浮空金属电极和阴极金属电极,衬底层向第二导电层的方向延伸将第二导电层分隔成两个第二导电区,两个第二导电区内均设置发射极区;两个第二导电区均包括基部和沿基部朝向另一第二导电区延伸的延伸部。本发明的结构简单,能够与IGBT模块并联后保护IGBT模块不被过电压损坏。

    陪栅浮空型沟槽栅IGBT芯片

    公开(公告)号:CN111129129A

    公开(公告)日:2020-05-08

    申请号:CN201811274977.7

    申请日:2018-10-30

    Abstract: 本发明提出了一种解决了沟槽栅IGBT在低感应用环境下栅阻对开通di/dt控制有限的问题的陪栅浮空型沟槽栅IGBT芯片,包括若干个相互并联的元胞,每个所述元胞包括依次排列的第一沟槽真栅、第二沟槽真栅及一个或多个沟槽陪栅,各沟槽真栅与栅极区相连,其特征在于,所述沟槽陪栅浮空设置,本发明的陪栅浮空型沟槽栅IGBT芯片解决了沟槽栅IGBT在低感应用环境下栅阻对开通di/dt控制有限的问题,实现了栅极电阻对IGBT开通速度(di/dt)的有效的调控,并优化了开通速度di/dt和开通损耗两者间的权衡关系。在不增加di/dt的情况下开通损耗也能得到有效的控制。

    一种具有三维沟道的复合栅IGBT芯片

    公开(公告)号:CN108682688A

    公开(公告)日:2018-10-19

    申请号:CN201810148909.X

    申请日:2018-02-13

    Abstract: 本发明公开了一种具有三维沟道的复合栅IGBT芯片,包括有多个元胞,元胞包括:位于元胞的中间区域的沟槽多晶硅栅电极;包围沟槽多晶硅栅电极的第一氧化层;通过向元胞在沟槽的两侧区域注入P型杂质而形成的P阱区;通过向P阱区在沟槽的两侧区域分别注入杂质而形成的掺杂区域,其中所述掺杂区域的宽度小于P阱区的宽度,掺杂区域包括N++掺杂区和P++掺杂区;位于元胞在掺杂区域的两侧区域上的第二氧化层,第二氧化层用以覆盖两个P阱区的两侧区域的表面、P阱区未设置掺杂区域的表面和部分掺杂区域;在第二氧化层上形成的平面多晶硅栅电极;覆盖平面多晶硅栅电极的第三氧化层。本发明可提升IGBT芯片的电流密度,以降低其导通压降。

    一种具有折叠型复合栅结构的IGBT芯片

    公开(公告)号:CN108598160A

    公开(公告)日:2018-09-28

    申请号:CN201810148664.0

    申请日:2018-02-13

    Abstract: 本发明公开了一种具有折叠型复合栅结构的IGBT芯片,包括若干复合栅单元,每一所述复合栅单元包括栅极区和位于所述栅极区两侧的有源区,其中,所述栅极区包括:在所述栅极区的指定位置向下刻蚀而成的至少一个沟槽,所述沟槽内设置有沟槽栅极;位于所述栅极区的表面上的平面栅极,所述平面栅极与沟槽栅极相连。所述有源区包括分别位于所述栅极区两侧的沟槽栅有源区和平面栅有源区,沟槽栅有源区和平面栅有源区均包括自下而上分布的N阱区、P阱区、P+掺杂区和N+掺杂扩散区。采用本发明可以大幅度提升IGBT芯片密度,并保留沟槽栅低通耗、高电流密度和平面栅宽安全工作区的特性。

    一种具有含虚栅的复合栅结构的IGBT芯片

    公开(公告)号:CN108428740A

    公开(公告)日:2018-08-21

    申请号:CN201810148858.0

    申请日:2018-02-13

    Abstract: 本发明公开了一种具有含虚栅的复合栅结构的IGBT芯片,包括形成于晶圆基片上的若干复合栅单元,复合栅单元包括栅极区和有源区,栅极区包括第一沟槽栅极、第二沟槽栅极和平面栅极,平面栅极与第一沟槽栅极相连,第二沟槽栅极悬空、接地或与平面栅极相连;有源区包括位于栅极区两侧的沟槽栅有源区和平面栅有源区,其均包括自下而上分布的N阱区、P阱区、P+掺杂区和N+掺杂扩散区。本发明可实现平面栅极和第一沟槽栅极共存于同一芯片,从而大大提升芯片密度,并通过平面栅极和第一沟槽栅极之间的第二沟槽栅极有效屏蔽平面栅极和第一沟槽栅极二者间相互干扰,同时优化复合栅的输入和输出电容,优化芯片开通电流的变化率,降低开关损耗。

Patent Agency Ranking