-
公开(公告)号:CN118646086A
公开(公告)日:2024-09-13
申请号:CN202410673237.X
申请日:2024-05-28
申请人: 浙江大学 , 浙江省白马湖实验室有限公司 , 浙江大学嘉兴研究院
IPC分类号: H02J3/46 , C25B1/04 , C25B1/27 , C25B9/65 , C25B15/08 , H02J3/28 , H02J3/38 , H02J3/00 , H02J3/06 , C07C1/12 , C07C9/04 , C07C29/152 , C07C31/04
摘要: 本发明涉及一种海‑陆协同的多能耦合低碳新型能源系统及优化调度方法,属于低碳综合能源发电技术领域,该系统包括设置于海洋及海岛上的低碳发电单元、绿色燃料合成单元、储能装置,设置于陆地上的绿色燃料综合利用单元、碳捕集装置,以及多能流耦合的海‑陆协同低碳智慧调控中心;该系统借助海洋及海岛丰富稳定的太阳能和风能发电,借助海水制备氢和氨,绿色燃料合成单元再用所得的氢与系统产生的二氧化碳重新制备绿色燃料,减少绿色燃料综合利用单元中煤和天然气的使用量,同时,产生的二氧化碳又作为原料重新制备绿色燃料,减少有害气体和二氧化碳的排放,通过海‑陆协同低碳智慧调控中心实现多时间尺度下的协同调度,系统能源综合利用率提升。
-
公开(公告)号:CN117761332A
公开(公告)日:2024-03-26
申请号:CN202311790830.4
申请日:2023-12-25
申请人: 浙江大学 , 浙江大学嘉兴研究院 , 浙江省白马湖实验室有限公司
IPC分类号: G01N35/02 , G01N35/04 , G01N35/00 , G01N33/00 , G01N25/00 , G01N21/65 , G01N21/3504 , G01N30/02 , G01N27/62 , G01N11/00 , G01N9/00 , G16C60/00
摘要: 本发明公开了污染物与CO2协同吸收材料高通量设计系统、装置及方法,涉及智能制造装备产业领域,包括吸收剂全自动高通量制备模块、吸收剂全自动动力学/热力学实验模块、气/液相表征模块、计算机集成控制系统,主要装置包括高精度六维中控机械臂、取料转运装置、加热搅拌制液装置、基础参数表征装置、吸收性能测试装置、解吸性能测试装置、稳定性能测试装置、废液收集装置。本发明通过数据驱动机器人科学家高通量合成吸收剂方法,实现材料理性设计和快速开发,可减小人力成本,提高实验效率,大大缩短吸收材料研发周期。
-
公开(公告)号:CN118812059A
公开(公告)日:2024-10-22
申请号:CN202410778496.9
申请日:2024-06-17
申请人: 浙江大学 , 浙江省白马湖实验室有限公司
摘要: 本发明公开了一种电催化降解耦合制氢的煤焦化废水资源化处理工艺,涉及水处理技术领域,本发明方法将煤焦化废水与经过初步生化处理后的其他废水混合,进行加碱絮凝处理、两级膜过滤处理、反渗透浓水电解处理以及碱液回用处理,与传统芬顿氧化、电化学氧化、树脂或活性炭吸附等方法相比,不会造成二次污染,分离成本低,有效实现了有机污染物的降解和电解制氢气,实现了煤焦化废水的资源化利用与全量化处理,高盐有机废水处理领域具有广泛的应用前景。
-
公开(公告)号:CN118756217A
公开(公告)日:2024-10-11
申请号:CN202410892456.7
申请日:2024-07-04
申请人: 浙江大学 , 浙江省白马湖实验室有限公司
IPC分类号: C25B11/091 , C25B1/04 , C25D9/04 , C25D11/02
摘要: 本发明公开了一种过渡金属掺杂镍羟基氧化物催化剂及其制备方法和应用,属于海水电解制氢领域,方法包括:(1)构建三电极体系,以导电基底作为工作电极,混合金属盐溶液作为电解液,利用恒电压法进行电沉积,取出负载有预催化剂的导电基底;其中混合金属盐溶液包括第一金属盐镍盐、第二金属盐铁盐和第三金属盐,第三金属盐为钴盐、铬盐、锰盐、钼盐中的至少一种;(2)构建三电极体系,以负载有预催化剂的导电基底为工作电极,碱溶液作为电解液,利用恒电流法使预催化剂原位转化形成过渡金属掺杂镍羟基氧化物催化剂;该催化剂催化活性高、选择性和稳定性高,可以在高电流密度下长时间稳定运行,在海水电解制氢系统中具有很大的应用潜力。
-
公开(公告)号:CN118412898A
公开(公告)日:2024-07-30
申请号:CN202410673243.5
申请日:2024-05-28
申请人: 浙江大学 , 浙江省白马湖实验室有限公司
摘要: 本发明涉及一种风‑光‑超长时储能耦合煤电的低碳发电系统配置优化方法,属于低碳综合能源发电技术领域,该方法按照最大化热储能装置和绿色燃料储能装置的出力、最小化煤的出力的原则进行设计,根据用电需求计算电力富余,若电力富余,按照上述运行策略运行,否则,则调整热储能装置、绿色燃料储能装置和煤的出力,形成碳排放最优的运行方式;基于该运行策略,输入当地全年的自然资源、电力负荷和各装置的技术经济性参数、各装置的装机容量的配置区间等参数,以平准化度电成本和负荷满足率作为各配置方案的目标函数或约束,并引入衡量环境影响的度电碳排放,从不同碳减排目标出发进行配置优化,获得不同碳减排阶段的最优容量配置。
-
公开(公告)号:CN117759411A
公开(公告)日:2024-03-26
申请号:CN202311707344.1
申请日:2023-12-13
摘要: 本发明公开了适应复杂航域受限空间的CO2解吸系统及灵活调控方法,涉及能源与环境技术领域,包括废气锅炉、紧凑型CO2吸收塔、紧凑型CO2贫富液换热器、紧凑型CO2解吸塔、紧凑型CO2富液预热装置、紧凑型CO2富液再沸预解吸装置和智能调控平台。进一步通过基于适应不同航段运行工况的知识与数据驱动CO2富液预热装置热源尾气抽取流量精准预测模型,及CO2富液再沸预解吸装置上段热源蒸汽抽取流量精准预测模型,建立适应复杂航域受限空间CO2解吸系统全局优化调控方法,实现不同发动机运行工况下解吸系统运行参数灵活调控,解决了复杂航行环境下不同发动机船舶碳解吸系统高能耗难题。
-
公开(公告)号:CN117225862A
公开(公告)日:2023-12-15
申请号:CN202311103869.4
申请日:2023-08-30
IPC分类号: B09B3/35 , B09B3/40 , B09B101/15
摘要: 本发明涉及一种双玻光伏组件拆解回收装置,包括传送单元、加热组件、切割组件,其中传送单元用于双玻光伏组件的水平传送;加热组件设于所述传送单元上方,用于对双玻光伏组件的加热;切割组件包括固定单元和设于固定单元上的切割丝单元,所述切割丝单元水平置于双玻光伏组件的待切割厚度位置,当双玻光伏组件被传送单元水平传动时,所述切割丝单元实现对双玻光伏组件的切割拆解。与现有技术相比,本发明通过一步实现双玻组件电池片和玻璃的分离,能够提高组件回收的效率,同时提高电池片、玻璃、背板回收的完整性和回收率,具有高效化、机械化和规模化应用等优点。
-
公开(公告)号:CN116272358A
公开(公告)日:2023-06-23
申请号:CN202211089959.8
申请日:2022-09-07
申请人: 浙江大学 , 浙江大学能源工程设计研究院有限公司
IPC分类号: B01D53/90 , G06F30/28 , B01D53/56 , G06F113/08
摘要: 本发明提供一种智能化辅助烟气脱硝系统喷氨调平试验的方法,包括以下步骤:S1.对烟气脱硝系统进行等比例三维建模和网格剖分以建立CFD模型;S2.计算各喷氨分区全部正常喷氨时流通过烟气脱硝系统出口测试面上各测点的氨浓度总值;S3.计算每个喷氨分区单独正常喷氨时流通过烟气脱硝系统出口测试面上各测点的氨浓度分值;S4.计算各喷氨分区对烟气脱硝系统出口测试面上各测点氨浓度贡献权重值;S5.建立具有各喷氨分区的权重值、各喷氨分区的喷氨量与烟气脱硝系统出口测试面上各测点的氨浓度调试的相对比例值三个矩阵参数的线性代数方程组;S6.求解方程组得到各个喷氨分区的喷氨量。本发明基于CFD仿真技术,通过模拟计算快速获得各喷氨支管调节阀门最佳开度。
-
公开(公告)号:CN114699883B
公开(公告)日:2023-06-13
申请号:CN202210431144.7
申请日:2022-04-22
摘要: 本发明涉及一种催化剂协同外场强化二氧化碳低能耗解吸系统及方法,吸收CO2后的富液经富液输送泵输运,与解吸后经贫液输送泵输运的贫液在贫富液换热器进行换热升温;升温后的富液进入解吸塔内,再生后的贫液经微波再沸器汽化后为解吸塔内的富液提供解吸能量,经微波再沸器汽化后的贫液与富液采用逆向接触,接触区域自上至下依次为带有超声波强化区的填料区、带有超声波强化区的催化区;解吸完的气混物经气液冷却器冷却和气液分离器气液分离后的液体继续注入解吸塔循环;降低了40%以上的能耗。本发明在催化剂协同超声波场/微波电磁场等外场作用下实现了二氧化碳低能耗解吸。
-
公开(公告)号:CN115111594A
公开(公告)日:2022-09-27
申请号:CN202210805850.3
申请日:2022-07-08
摘要: 本发明涉及一种蓄热式热力氧化炉智能调控系统及方法,包括装置部分、感知模块、预测模块、优化模块和控制模块;首先通过相对稳定的污水处理站低浓度废气对间歇性的车间高浓度废气混合缓冲,将RTO入口挥发性有机物浓度调节至2000~3000mg/m3;然后通过RTO上游废气参数及RTO实时运行参数并结合长短期记忆神经网络预测燃烧室温度变化情况,建立RTO燃烧热量衡算机理模型计算出调节燃烧室温度的稀释风和辅助燃料供应的需求量;将目标调节量传输至控制器完成智能调控,使燃烧室温度稳定维持在预设温度附近,解决因生产侧废气排放波动引起的RTO运行不稳定、燃料消耗大、安全风险大等问题,实现VOCs的高效节能稳定脱除。
-
-
-
-
-
-
-
-
-