-
公开(公告)号:CN117315534A
公开(公告)日:2023-12-29
申请号:CN202311233285.9
申请日:2023-09-22
申请人: 湖北工业大学 , 西宁市大数据服务管理局 , 西宁卓尔信息科技有限公司
IPC分类号: G06V20/40 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/006 , G06N3/0464 , G06N3/048 , G06N3/08
摘要: 本发明提供一种基于VGG‑16和鲸鱼优化算法的短视频分类方法,将获取的视频帧图像输入到VGG‑16网络中进行特征提取,利用定义的视频分类性能评价函数,通过利用鲸鱼优化算法对VGG‑16网络中的特征权重最优参数问题优化求解,从而可以快速的获得最优特征权重参数,可用于计算机视频分类相关技术领域中,该分类方法能够提高算法的效率,能够满足短视频快速分类的应用要求,使用VGG‑16卷积神经网络来有效地提取视频帧中特征,提高了提取有效特征的能力,为后续根据特征进行短视频分类奠定了基础,充分解决了目前技术中全连接层中计算量大,计算时间长的问题,更加快速地进行短视频的分类。
-
公开(公告)号:CN117033965A
公开(公告)日:2023-11-10
申请号:CN202311009307.3
申请日:2023-08-11
申请人: 湖北工业大学 , 西宁市大数据服务管理局
IPC分类号: G06F18/2113 , G06F18/214 , G06N3/006 , G16B40/00
摘要: 本发明公开了生物疫苗数据特征选择方法、装置、设备及介质,涉及生物疫苗研发数据挖掘技术领域,方法包括步骤1:对高维生物疫苗数据集进行预处理,使用卡方检验计算每个特征与标签之间的相关性,并按照相关性进行排序,保留指定比例的排序靠前的特征;步骤2:将预处理后的生物疫苗数据集划分为训练集和测试集;该生物疫苗数据特征选择方法、装置、设备及介质,通过设置算法模型模块、算法迭代模块、算法输出模块,使用自适应的参数更新策略用于取代粒子群优化算法的固定参数,使粒子能在更合理的范围内搜索,还采用了一种向搜索过程中前三位最优粒子学习的领导学习策略,为粒子搜索提供了更丰富的种群多样性。
-
公开(公告)号:CN117035017A
公开(公告)日:2023-11-10
申请号:CN202310961099.0
申请日:2023-08-01
申请人: 湖北工业大学 , 西宁市大数据服务管理局 , 西宁卓尔信息科技有限公司
IPC分类号: G06N3/0455 , G06N3/08
摘要: 本发明公开了一种基于改进型杂交育种算法的胶囊网络参数优化方法及系统。先将各组待优化的超参数组合编码为各种群个体,由各种群个体组成种群;根据种群个体中各个分量所代表的超参数的取值区间为各分量设定初始化位置,随机初始化胶囊网络模型的权重;再将种群个体解码为超参数组合输入到胶囊网络模型进行迭代训练,计算各种群个体的适应度值,根据适应度值的大小将各种群个体划分为保持系个体、恢复系个体和不育系个体,并对不同系的个体进行更新;如果达到预设的种群迭代次数,得到适应度值最小的种群个体为全局最优的胶囊网络超参数组合。本发明不仅能够使网络的超参数配置更加合理,而且能够减少时间成本。
-
公开(公告)号:CN117093844B
公开(公告)日:2024-03-15
申请号:CN202311009220.6
申请日:2023-08-11
申请人: 湖北工业大学 , 西宁市大数据服务管理局
IPC分类号: G06F18/2111 , G06F18/214 , G06F18/22 , G06N3/126
摘要: 本发明公开了工业大数据多模态特征选择方法、装置、设备及介质,涉及工业大数据机器学习技术领域,方法包括步骤1,数据准备,获取工业生产过程中的大数据,进行初步预处理,将处理后的数据集划分为训练集和测试集;步骤2,设置算法相关参数和外部存档,并初始化种群;该工业大数据多模态特征选择方法、装置、设备及介质,通过设置数据处理模块、小生境划分模块、小生境处理模块,设计海明相似度用于区分离散空间中不同特征子集,避免传统欧氏距离难以区分离散解的问题。动态小生境策略通过集群池动态调整小生境规模,避免传统小生境技术参数敏感性、难以维持稳定小生境等问题。
-
公开(公告)号:CN117093844A
公开(公告)日:2023-11-21
申请号:CN202311009220.6
申请日:2023-08-11
申请人: 湖北工业大学 , 西宁市大数据服务管理局
IPC分类号: G06F18/2111 , G06F18/214 , G06F18/22 , G06N3/126
摘要: 本发明公开了工业大数据多模态特征选择方法、装置、设备及介质,涉及工业大数据机器学习技术领域,方法包括步骤1,数据准备,获取工业生产过程中的大数据,进行初步预处理,将处理后的数据集划分为训练集和测试集;步骤2,设置算法相关参数和外部存档,并初始化种群;该工业大数据多模态特征选择方法、装置、设备及介质,通过设置数据处理模块、小生境划分模块、小生境处理模块,设计海明相似度用于区分离散空间中不同特征子集,避免传统欧氏距离难以区分离散解的问题。动态小生境策略通过集群池动态调整小生境规模,避免传统小生境技术参数敏感性、难以维持稳定小生境等问题。
-
公开(公告)号:CN116992258A
公开(公告)日:2023-11-03
申请号:CN202310974597.9
申请日:2023-08-02
申请人: 湖北工业大学
IPC分类号: G06F18/2111 , G06F18/2113 , G06F18/214 , G06F16/35 , G06F40/216 , G06F40/284 , G06N3/06
摘要: 本发明公开了一种基于改进蚁群优化算法的多标签文本特征选择方法,包括以下步骤:步骤1、数据准备,对文本数据集进行预处理;步骤2、环境准备,转换得到的文本向量和标签向量使用岭回归提取特征标签相关性;步骤3、蚁群优化;步骤4、特征选择并输出迭代后的信息素。本发明通过蚁群在有监督和无监督加权图中游走,寻找在这两个监督范式下冗余性都较低的特征,同时通过节点中心性自适应的调整蚁群在不同数据集上迭代过程中所需游走的特征个数,通过参数的自适应提高蚁群的搜索能力,平衡探索与开发的能力。通过以上两个策略提升蚁群的优化能力,使得蚁群能捕获具有判别力的特征,获得最优特征子集。
-
公开(公告)号:CN116866347A
公开(公告)日:2023-10-10
申请号:CN202310959414.6
申请日:2023-08-01
申请人: 湖北工业大学 , 武汉烽火技术服务有限公司
IPC分类号: H04L67/10 , H04L41/142 , G06N3/126
摘要: 本发明提供一种基于Two_Arch2算法的工业物联网节点数优化方法,利用非支配排序方法对Two_Arch2算法中种群CA和DA进行更新,将解集按照其在多目标优化问题中的优劣程度进行分类和排序,并将没有被任何其他个体支配的解放入DA中,在对CA种群进行更新时引入基于偏移的密度估计指标,并且用随机排序法对两个指标进行了平衡,引导种群以较快的速度收敛到真实的帕累托前沿,可用于工业物联网相关技术领域中;本发明采用的更新方法和评价方法能够提高区块链系统吞吐率和降低系统成本,同时降低因节点导致的通讯时延开销,为工业物联网部署时寻找最优节点数,提高系统的可扩展性,能够满足工业物联网部署时的要求。
-
-
公开(公告)号:CN104376543B
公开(公告)日:2017-02-22
申请号:CN201410711875.2
申请日:2014-11-28
申请人: 湖北工业大学
IPC分类号: G06T5/40
摘要: 本发明公开了一种基于杜鹃搜索算法的自适应图像增强方法,本发明利用定义的图像质量评价函数,综合考虑增强后的图像的空间统计特征,熵等信息,通过利用杜鹃搜索算法对归一化的非完全Beta函数图像增强应用中最优参数问题优化求解,从而可以快速的获得最优增强参数,可用于数字图像处理相关技术领域中;本发明能够快速的获得归一化的非完全Beta函数图像增强的最优参数,所定义的图像质量评价函数能够客观的评价图像的质量,能够用于偏亮或者(56)对比文件韩泉叶 等.微粒群优化和视觉感应相结合的图像增强方法《.计算机工程与应用》.2011,第47卷(第3期),第199-201页.Gao Qingqing 等.Image EnhancementTechnique Based on Improved PSOAlgorithm《.2011 6th IEEE Conference onIndustrial Electronics and Applications》.2011,第234-238页.
-
公开(公告)号:CN104376543A
公开(公告)日:2015-02-25
申请号:CN201410711875.2
申请日:2014-11-28
申请人: 湖北工业大学
IPC分类号: G06T5/40
摘要: 本发明公开了一种基于杜鹃搜索算法的自适应图像增强方法,本发明利用定义的图像质量评价函数,综合考虑增强后的图像的空间统计特征,熵等信息,通过利用杜鹃搜索算法对归一化的非完全Beta函数图像增强应用中最优参数问题优化求解,从而可以快速的获得最优增强参数,可用于数字图像处理相关技术领域中;本发明能够快速的获得归一化的非完全Beta函数图像增强的最优参数,所定义的图像质量评价函数能够客观的评价图像的质量,能够用于偏亮或者偏暗图像增强以后的质量评价,能够满足图像自动增强的要求。
-
-
-
-
-
-
-
-
-