基于边缘梯度和方向纹理提取遥感影像中河宽方法

    公开(公告)号:CN114565657B

    公开(公告)日:2023-08-15

    申请号:CN202210206783.3

    申请日:2022-03-04

    Abstract: 本发明公开了一种基于边缘梯度和方向纹理提取遥感影像中河宽的方法,其实现步骤为:对河道范围内的数字高程模型数据进行水文分析,确定河网,划定缓冲区,并对影像进行裁剪,得到缓冲区影像,利用水体指数确定河道在缓冲区影像中的位置,根据灰度梯度的变化确定河道的边界,找出河道中心线上的点,由方向纹理特征确定河道的延伸方向,进一步确定河道的正交方向,再根据河道正交方向计算河道的宽度。本发明能够较好的解决提取遥感影像中河宽的过程中存在山体阴影的干扰的问题,具有普适性强、精度高的优点。

    一种基于HRNet的改进型遥感图像道路提取方法、系统、设备及介质

    公开(公告)号:CN116935226B

    公开(公告)日:2024-07-09

    申请号:CN202310959573.6

    申请日:2023-08-01

    Abstract: 一种基于HRNet的改进型遥感图像道路提取方法、系统、设备及介质,方法包括:对CHN6‑CUG数据集的高分辨率遥感影像数据预处理,得到预处理后的遥感图像数据集;构建基于改进HRNet的道路预测模型;设置网络训练参数;根据网络训练参数,使用遥感图像数据集中的训练集和验证集,对改进HRNet网络进行训练;将测试集输入训练好的模型中进行预测,输出预测得到的道路信息二值图;系统、设备及介质:用于实现上述方法;本发明采用空洞空间金字塔池化、通道注意力机制、深度可分离卷积方法对原HRNet网络改进,使用CHN6‑CUG遥感影像数据集进行模型训练与预测,有效提取高分辨率遥感图像中的道路信息,具有模型适应性强、道路提取精度高及网络轻量化的优点。

    一种基于HRNet的改进型遥感图像道路提取方法、系统、设备及介质

    公开(公告)号:CN116935226A

    公开(公告)日:2023-10-24

    申请号:CN202310959573.6

    申请日:2023-08-01

    Abstract: 一种基于HRNet的改进型遥感图像道路提取方法、系统、设备及介质,方法包括:对CHN6‑CUG数据集的高分辨率遥感影像数据预处理,得到预处理后的遥感图像数据集;构建基于改进HRNet的道路预测模型;设置网络训练参数;根据网络训练参数,使用遥感图像数据集中的训练集和验证集,对改进HRNet网络进行训练;将测试集输入训练好的模型中进行预测,输出预测得到的道路信息二值图;系统、设备及介质:用于实现上述方法;本发明采用空洞空间金字塔池化、通道注意力机制、深度可分离卷积方法对原HRNet网络改进,使用CHN6‑CUG遥感影像数据集进行模型训练与预测,有效提取高分辨率遥感图像中的道路信息,具有模型适应性强、道路提取精度高及网络轻量化的优点。

    基于边缘梯度和方向纹理提取遥感影像中河宽方法

    公开(公告)号:CN114565657A

    公开(公告)日:2022-05-31

    申请号:CN202210206783.3

    申请日:2022-03-04

    Abstract: 本发明公开了一种基于边缘梯度和方向纹理提取遥感影像中河宽的方法,其实现步骤为:对河道范围内的数字高程模型数据进行水文分析,确定河网,划定缓冲区,并对影像进行裁剪,得到缓冲区影像,利用水体指数确定河道在缓冲区影像中的位置,根据灰度梯度的变化确定河道的边界,找出河道中心线上的点,由方向纹理特征确定河道的延伸方向,进一步确定河道的正交方向,再根据河道正交方向计算河道的宽度。本发明能够较好的解决提取遥感影像中河宽的过程中存在山体阴影的干扰的问题,具有普适性强、精度高的优点。

    基于深度可分离卷积和跳跃连接的遥感影像水体提取方法

    公开(公告)号:CN115131680B

    公开(公告)日:2024-08-20

    申请号:CN202210790355.X

    申请日:2022-07-05

    Abstract: 本发明公开了一种基于深度可分离卷积和跳跃连接的遥感影像水体提取方法,解决了水体样本标注效率低,河流支流或小水体提取困难的技术难题。实现步骤包括,获取原始遥感图像并预处理;用最大似然分类法得到水体标签;裁剪并筛选组成数据集;图像增强;构建基于FASPP的卷积网络DUPnet;建立图像输入网络的特征提取流程;构建混合损失函数TCELosss和设置训练参数;得到水体提取结果。本发明构建DUPnet网络,网络编码器使用深度可分离卷积减少特征信息丢失;网络的跳跃连接使用FASPP弥补采样过程造成的特征损失;构建TCELoss改善数据集中正负样本不平衡的问题。本发明用于从遥感影像中高质量提取水体,提高了制作遥感影像水体样本效率和水体分割精度。

    基于深度可分离卷积和跳跃连接的遥感影像水体提取方法

    公开(公告)号:CN115131680A

    公开(公告)日:2022-09-30

    申请号:CN202210790355.X

    申请日:2022-07-05

    Abstract: 本发明公开了一种基于深度可分离卷积和跳跃连接的遥感影像水体提取方法,解决了水体样本标注效率低,河流支流或小水体提取困难的技术难题。实现步骤包括,获取原始遥感图像并预处理;用最大似然分类法得到水体标签;裁剪并筛选组成数据集;图像增强;构建基于FASPP的卷积网络DUPnet;建立图像输入网络的特征提取流程;构建混合损失函数TCELosss和设置训练参数;得到水体提取结果。本发明构建DUPnet网络,网络编码器使用深度可分离卷积减少特征信息丢失;网络的跳跃连接使用FASPP弥补采样过程造成的特征损失;构建TCELoss改善数据集中正负样本不平衡的问题。本发明用于从遥感影像中高质量提取水体,提高了制作遥感影像水体样本效率和水体分割精度。

Patent Agency Ranking