一种N极性III族氮化物半导体器件的性能预测方法及装置

    公开(公告)号:CN114217200B

    公开(公告)日:2024-01-30

    申请号:CN202111507585.2

    申请日:2021-12-10

    IPC分类号: G01R31/26

    摘要: 本发明公开了一种N极性III族氮化物半导体器件的性能预测方法及装置,其中的方法包括如下步骤:获取待预测器件各层的厚度和各层的组分;根据各层的厚度和各层的组分确定待预测器件中的异质结界面极化电荷;基于待预测器件的界面和内部电场特性确定待预测器件的静态性能与异质界面极化电荷之间的协同对应关系;获取待预测器件中各沟道顶部界面的势垒高度;根据异质结界面极化电荷、各沟道顶部界面的势垒高度、各层的组分和厚度以及协同对应关系确定待预测器件的静态性能。本发明中的方法,能够实现对N极性(III族氮化物)HEMTs器件结构的2DEG浓度和势垒高度进行计算,并预测2DHG的产(56)对比文件薛舫时.微波功率AlGaN/GaN HFET的二维能带和异质结构设计.中国电子科学研究院学报.2007,(第05期),全文.周玉刚,沈波,刘杰,周慧梅,俞慧强,张荣,施毅,郑有炓.用肖特基电容电压特性数值模拟法确定调制掺杂Al_xGa_(1-x)N/GaN异质结中的极化电荷.物理学报.2001,(第09期),全文.王良臣.半导体量子器件物理讲座 第二讲高电子迁移率晶体管(HEMT).物理.2001,(第04期),全文.薛舫时.AlGaN/GaN异质结构中的极化工程.固体电子学研究与进展.2008,(第03期),全文.陈震,刘新宇,吴德馨.双异质结双平面掺杂HEMT器件的电荷控制模型.半导体学报.2004,(第07期),全文.薛舫时.GaN HFET的综合设计.固体电子学研究与进展.2009,(第04期),全文.

    一种研究材料表面生长成膜能力的计算方法

    公开(公告)号:CN114388080A

    公开(公告)日:2022-04-22

    申请号:CN202210040132.1

    申请日:2022-01-13

    摘要: 本发明公开了一种研究材料表面生长成膜能力的计算方法,包括下列步骤:步骤一、衬底模型构建,建立衬底材料的超胞模型并优化;步骤二、成膜材料的原子附着位点选择,选取单个成膜材料的原子放在衬底模型表面上,对此模型进行结构优化,得到初始吸附模型及第一次稳定吸附位点;再选择衬底上相邻的重复结构重复上述操作,得到最终吸附模型及第二次稳定吸附位点;步骤三、迁移势垒计算,建立NEB模型,计算这两组吸附模型中的稳定吸附位点间的迁移势垒;步骤四、应用分析,基于上一步得到的迁移势垒和分析得到的影响关系确定一个参数范围进行成膜工艺的调试。本方法以较快的速度确定各种材料成膜所需的温度等参数范围,提高调试和研发效率。

    一种基于反向I-V特性的二极管漏电分析方法

    公开(公告)号:CN114236340A

    公开(公告)日:2022-03-25

    申请号:CN202111563751.0

    申请日:2021-12-20

    IPC分类号: G01R31/26

    摘要: 本发明属于半导体技术领域,公开了一种基于反向I‑V特性的二极管漏电分析方法,包括下列步骤:步骤一、制备二极管的样品用于测试分析;步骤二、对二极管的样品进行变温反向I‑V特性测试,测得的不同温度下的反向I‑V特性数据;步骤三、通过不同漏电流输运机制的漏电流计算公式对上一步所得的反向I‑V特性数据进行拟合,分析出对应的漏电流输运机制。本发明能依据计算公式对多组I‑V特性曲线进行分段拟合分析,最后准确得出该二极管样品的漏电流运输机制,有助于技术人员改善工艺、优化产品应用,对提升产品的质量和可靠性有着较大的意义。

    一种N极性III族氮化物半导体器件的性能预测方法及装置

    公开(公告)号:CN114217200A

    公开(公告)日:2022-03-22

    申请号:CN202111507585.2

    申请日:2021-12-10

    IPC分类号: G01R31/26

    摘要: 本发明公开了一种N极性III族氮化物半导体器件的性能预测方法及装置,其中的方法包括如下步骤:获取待预测器件各层的厚度和各层的组分;根据各层的厚度和各层的组分确定待预测器件中的异质结界面极化电荷;基于待预测器件的界面和内部电场特性确定待预测器件的静态性能与异质界面极化电荷之间的协同对应关系;获取待预测器件中各沟道顶部界面的势垒高度;根据异质结界面极化电荷、各沟道顶部界面的势垒高度、各层的组分和厚度以及协同对应关系确定待预测器件的静态性能。本发明中的方法,能够实现对N极性(III族氮化物)HEMTs器件结构的2DEG浓度和势垒高度进行计算,并预测2DHG的产生,有助于理解N极性多沟道HEMTs器件原理并指导器件制作。