一种基于常识和记忆网络的长期目标运动跟踪方法

    公开(公告)号:CN111915648A

    公开(公告)日:2020-11-10

    申请号:CN202010685477.3

    申请日:2020-07-16

    摘要: 本发明提出了一种基于常识和记忆网络的长期目标运动跟踪方法,用以解决现有跟踪方法不能有效适应不确定运动场景下的目标跟踪问题。其步骤为:首先利用跟踪器在局部搜索窗内预测目标位置,然后利用单层记忆网络判断预测结果的可靠性。若可靠则进行下一帧的跟踪,否则利用常识信息和针对跟踪任务开发的语义目标感知特征从全局图片中生成少量高质量的包含目标真实运动状态的建议,再通过记忆网络选择最佳的候选建议作为预测结果。最后,利用可靠的跟踪结果对记忆网络进行微调以保持目标的外观记忆。本发明的单层记忆网络结构简单、运算量小;且本发明将记忆网络和语义目标感知建议相结合能够适应突变运动等目标跟踪问题,实现长期跟踪。

    一种基于常识和记忆网络的长期目标运动跟踪方法

    公开(公告)号:CN111915648B

    公开(公告)日:2023-09-01

    申请号:CN202010685477.3

    申请日:2020-07-16

    摘要: 本发明提出了一种基于常识和记忆网络的长期目标运动跟踪方法,用以解决现有跟踪方法不能有效适应不确定运动场景下的目标跟踪问题。其步骤为:首先利用跟踪器在局部搜索窗内预测目标位置,然后利用单层记忆网络判断预测结果的可靠性。若可靠则进行下一帧的跟踪,否则利用常识信息和针对跟踪任务开发的语义目标感知特征从全局图片中生成少量高质量的包含目标真实运动状态的建议,再通过记忆网络选择最佳的候选建议作为预测结果。最后,利用可靠的跟踪结果对记忆网络进行微调以保持目标的外观记忆。本发明的单层记忆网络结构简单、运算量小;且本发明将记忆网络和语义目标感知建议相结合能够适应突变运动等目标跟踪问题,实现长期跟踪。