摘要:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchanger polymer; (b) an anion exchanger polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100 % (a) to 100 % (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group of the phyllosilicates or tectosilicates. The use of bentonites and zeolites are generally preferred in special montomorillonite. The mixture ratio isomer:bentonite ranges from 99:1 to 30:70. The invention also relates to the application of the composites/composite membranes: as proton conductors in membrane fuel cells (H2 fuel cells PEFC, direct methanol fuel cells DMFC) at temperatures greater than 100 °C; in (electro)membrane separation methods such as dialysis, diffusion dialysis, gas separation, pervaporation, perstraction and in microfiltration and ultrafiltration, particularly due to their antifouling properties, and; as catalytic membranes in catalytic membrane reactors.
摘要:
The invention relates to a composite membrane that consists of organic functional polymers and ceramic nanoparticles (1 - 100 nm), except for phyllosilicates and tectosilicates, with intercalating water and/or a high surface concentration in acidic/alkaline groups (for example hydroxyl) and water. The use of such particles allows a sufficiently high mechanical stability of the composite material and a stabilization of the proton concentration in the membrane that is necessary for the conductivity up to an operating temperature of 300 °C. The inventive composite material is characterized by the interfaces that are formed in the microheterogeneous mixture between the polymer and the ceramic powder. Said interfaces, if formed in a sufficiently high quantity (high phase share of nanoscale particles) allow a transport of the protons at a low pressure and at temperatures of more than 100 °C. If the polymer/ceramic particle boundary layer is modified by means of boundary groups that have different polarities, preferably at the polymer skeleton, the local establishment of equilibrium and thus the binding strength of the proton charge carriers is influenced. This effect can be used, for example for alcohol/water mixtures as a fuel, to reduce the MeOH passage (Me = CH3, C2H5, C3H7, ...) across the membrane, which is especially important for the development of efficient direct methanol fuel cells. In addition to its use in fuel cells, the inventive membrane can also be used in the field of energy and process technology, in which water vapor is produced or required in addition to electric current or in which (electro)chemically catalyzed reactions are carried out at increased temperatures at a pressure that ranges from the atmospheric pressure to elevated working pressures or that are carried out in a water vapor atmosphere. The invention further relates to a method for producing and processing such a composite membrane.
摘要:
The invention relates to a method for producing nitrated and optionally sulphonated and aminated and optionally sulphonated aryl main chain polymers, in addition to aryl main chain polymers thus modified. Aryl main chain polymers (e.g. (1)) are nitrated by dissolving them in expensive, toxic and environmentally damaging solvents. Aryl main chain polymers which are selectively and simultaneously nitrated and sulphonated were not previously known in literature. The inventive method makes it possible to produce low-cost nitrated (and optionally sulphonated (2)) or post-reduction aminated (and optionally sulphonated) aryl main chain polymers without any organic solvents. Nitration (and optionally additional sulphonation) of the aryl main chain polymers occurs by dissolving them in concentrated sulphuric acid and by adding desired amounts of nitric acid at different temperatures and with different agitating times. The reaction can be carried out (a) as a two-step process: nitration followed by isolation of the polymer, then optional sulphonation and (b) as a single-step process: simultaneous nitration and sulphonation (2). The nitrated (or additionally sulphonated) polymers can then be reduced to form aminated (or additionally sulphonated) polymer. The polymers can be reacted with other polymers to form polymer blends. The polymers and polymer blends can be used as ion conducting membranes in electro membrane processes.
摘要:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchanger polymer; (b) an anion exchanger polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100 % (a) to 100 % (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group of the phyllosilicates or tectosilicates. The use of bentonites and zeolites are generally preferred in special montomorillonite. The mixture ratio isomer:bentonite ranges from 99:1 to 30:70. The invention also relates to the application of the composites/composite membranes: as proton conductors in membrane fuel cells (H2 fuel cells PEFC, direct methanol fuel cells DMFC) at temperatures greater than 100 °C; in (electro)membrane separation methods such as dialysis, diffusion dialysis, gas separation, pervaporation, perstraction and in microfiltration and ultrafiltration, particularly due to their antifouling properties, and; as catalytic membranes in catalytic membrane reactors.
摘要:
The invention relates to novel organic/inorganic hybrid membranes which have the following composition: a polymer acid containing -SO3H-, -PO3H2-, -COOH- or B(OH)2 groups; a polymer base (optional), which contains primary, secondary or tertiary amino groups, pyridine groups, imidazole, benzimidazole, triazole, benzotriazole-pyrazole or benzpyrazole groups, either in the side chain or the main chain; an additional polymer base (optional) containing the aforementioned base groups; an elemental oxide, or metal oxide or metal hydroxide, which has been obtained by the hydrolysis and/or sol-gel reaction of one elemental organic and/or organometallic compound during the membrane forming process and/or by a re-treatment of the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention also relates to methods for producing said membranes and to the various uses for membranes of this type.
摘要:
The invention relates to novel organic/inorganic hybrid membranes which have the following composition: a polymer acid containing -SO3H-, -PO3H2-, -COOH- or B(OH)2 groups; a polymer base (optional), which contains primary, secondary or tertiary amino groups, pyridine groups, imidazole, benzimidazole, triazole, benzotriazole-pyrazole or benzpyrazole groups, either in the side chain or the main chain; an additional polymer base (optional) containing the aforementioned base groups; an elemental oxide, or metal oxide or metal hydroxide, which has been obtained by the hydrolysis and/or sol-gel reaction of one elemental organic and/or organometallic compound during the membrane forming process and/or by a re-treatment of the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention also relates to methods for producing said membranes and to the various uses for membranes of this type.
摘要:
The invention relates to blends and blend membranes from low-molecular hydroxymethylene-oligo-phosphonic acids R-C(PO3H2)x(OH)y and polymers, the group R representing any organic group and the polymers containing the following functional groups: cation exchanger groups or their nonionic precursors of the type SO2X, X = HaI, OH, OMe, NR1R2, OR1 with Me = any metal cation or ammonium cation, R1, R2 = H or any aryl- or alkyl group, POX2, COX and/or basic groups such as primary, secondary or tertiary amino groups, imidazole groups, pyridine groups, pyrazole groups etc. and/or OH groups. Low molecular hydroxymethylene-oligo-phosphonic acids R-C(PO3H2)x(OH)y are preferred in which x = 2 and y = 1. The invention also relates to low-molecular hydroxymethylene-oligo-phosphonic acids R-C(PO3H2)2(OH)1 and polymers, wherein the group R of the hydroxymethylene-oligophosphonic acid contains an aliphatic or aromatic basic group which ionically interacts with the acidic groups of the polymer or of the polymer mixture. The invention further relates to blends and blend membranes from low-molecular hydroxymethylene-oligo-phosphonic acids R-C(PO3H2)2(OH)1 and polymers, wherein the OH groups of the low-molecular hydroxymethylene-1,1-bisphosphonic acid are covalently cross-linked with each other or optionally with OH groups of the polymer. The invention also relates to polymers that are modified with the 1-hydroxymethylene-1,1-bisphosphonic acid group. The polymers are produced by reacting polymers which contain carboxylic acid groups or carboxylic halide groups -COHal (Hal=F, Cl, Br, I) with phosphite compounds or by reacting polymeric aldehydes or polymeric keto compounds with phosphite esters while carrying out an amine catalysis, an oxidation of the intermediary hydroxyphosphonic acid with MnO2 or any other oxidant. The invention finally relates to methods for producing the aforementioned materials and to the use of membranes of the aforementioned materials in membrane processes and especially in fuel cells, even at temperatures of >100°C.
摘要:
The invention relates to the following types of composite membranes; composites or composite membranes obtained by adding a metal salt, e.g. from ZrOC12, to a solvent, especially DMSO, for dissolving one or more polymers in an organic solvent or in aqueous systems, in addition to the subsequent precipitation in the matrix of the thus produced composite-membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid. The invention also relates to composites or composite membranes obtained by subsequent ion exchange of finished polymer membranes with a suitable salt cation, especially Zr02+, wherein the polymer membrane is, optionally, swollen with an organic solvent or a mixture of organic solvent with water prior to the ion exchange and the subsequent precipitation of a low soluble salt, e.g. from Zr3(P04)4, in the membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid. The invention further relates to composites or composite membranes obtained by adding nano-scaled Zr3(P04)4 powder to a polymer solution, composites and composite membranes obtained according to the above-mentioned methods, wherein additional heteropoly acids are also incorporated into the polymer or membrane morphology, in addition to methods for producing said inventive polymers and membranes.
摘要:
The invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes that are composed of: one polymer acid halide containing SO2X, POX2 or COX groups (X=F, Cl, Br, I); one elemental or metallic oxide or hydroxide, obtained by the hydrolysis and/or the sol/gel reaction of an elemental and/or organometallic compound during the membrane forming process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention further relates to hybrid blends and hybrid blend membranes containing polymers that carry SO3H, PO3H2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymer acid halides contained in the polymer blend or the polymer blend membrane. The invention also relates to methods for producing the inventive hybrid blends and hybrid blend membranes.