Abstract:
An Amine neutralized sulfonated block copolymer and a method for neutralizing a sulfonated block copolymer, the process including providing a solution comprising an organic solvent and the non-neutralized block copolymer in micellar form, and adding at least one amine to the solution.
Abstract:
Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block / non-polar moiety-containing copolymer block / polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block / polar moiety-containing copolymer block / non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
Abstract:
The present specification relates to a polymer with improved acid resistance, a polymer electrolyte membrane including the same, a membrane-electrode assembly including the polymer electrolyte membrane, a fuel cell including the membrane-electrode assembly, and a redox flow battery including the polymer electrolyte membrane.
Abstract:
The present invention relates to a novel sulfonate-based compound, a method for preparing the same, a polymer electrolyte membrane comprising the sulfonate-based compound, a membrane electrode assembly comprising the same and a fuel cell comprising the same.
Abstract:
An object of the present invention is to provide a polymer electrolyte membrane, which has excellent proton conductivity even under a low humidity condition and a low temperature condition, further is excellent in the mechanical strength and the physical durability, and is capable of achieving the high power, the high energy density, and the long-term durability when being used as a polymer electrolyte fuel cell; and a membrane electrode assembly and a polymer electrolyte fuel cell, using the polymer electrolyte membrane, the present invention being a composite polymer electrolyte membrane including a composite layer of an aromatic hydrocarbon-based polymer electrolyte and a fluorine-containing polymer porous membrane, in which a ratio (O/F ratio) of an atomic composition percentage of oxygen O (at%) to an atomic composition percentage of fluorine F (at%) on the outermost surface of the fluorine-containing polymer porous membrane as measured by X-ray photoelectron spectroscopy (XPS) is 0.2 or more to 2.0 or less, and further the aromatic hydrocarbon-based polymer electrolyte in the composite layer forms a phase separation structure.
Abstract:
Provided are a reinforced composite membrane and a method of manufacturing the reinforced composite membrane, and more particularly, a reinforced composite membrane including a porous support layer; and an electrolyte membrane layer formed on one surface or each of both surfaces of the porous support layer, at least a portion of the porous support layer being impregnated with an electrolyte, and a method of manufacturing the reinforced composite membrane. The reinforced composite membrane may enhance an interfacial adhesive force between a support and the electrolyte membrane layer, and may be manufactured on a continuous mass production.
Abstract:
The present specification relates to a polymer with improved ion transport capability, a polymer electrolyte membrane including the same, a membrane-electrode assembly including the polymer electrolyte membrane, a fuel cell including the membrane-electrode assembly, and a redox flow battery including the polymer electrolyte membrane.
Abstract:
Provided is a catalyst layer for fuel cell which has a high catalytic activity and enables maintaining the high catalytic activity. Disclosed is an electrode catalyst layer for fuel cell including a catalyst containing a catalyst carrier having carbon as a main component and a catalytic metal supported on the catalyst carrier, and a polymer electrolyte having a sulfonic acid group (-SO 3 H) as an ion exchange group, in which the catalyst has the R' (D' /G intensity ratio) of 0.6 or less, which is the ratio of D' band peak intensity (D' intensity) measured in the vicinity of 1620 cm -1 relative to G band peak intensity (G intensity) measured in the vicinity of 1580 cm -1 by Raman spectroscopy, and has BET specific surface area of 900 m 2 /g catalyst carrier or more, and mole number of a sulfonic acid group in the polymer electrolyte relative to weight of the catalyst carrier is 0.7 mmol/g or more and 1.0 mmol/g or less.