摘要:
A modulus divider stage (MDS) includes first and second stages. The MDS receives a modulus divisor control signal S that determines whether the MDS stage operates in a divide-by-two mode or a divide-by-three mode. The MDS stage also receives a feedback modulus control signal from another MDS. When in the divide-by-two mode, the MDS divides by two regardless of the feedback modulus control signal. To conserve power, the first stage is unpowered when the MDS stage operates in the divide-by-two mode. When in the divide-by-three mode, the MDS stage either divides by two or by three depending on the feedback modulus control signal. To further reduce power consumption, the first stage is unpowered when the MDS stage is in the divide-by-three mode but is nonetheless performing a divide-by-two operation. A power-down transistor holds the output of the first stage at the proper logic level when the first stage is unpowered.
摘要:
Techniques for generating bias voltages for a multi-cascode amplifier. In an aspect, a multi-cascode bias network is provided, each transistor in the bias network being a replica of a corresponding transistor in the multi-cascode amplifier, enabling accurate biasing of the transistors in the multi-cascode amplifier. In another aspect, a voltage supply for the multi-cascode amplifier is provided separately from a voltage supply for the replica bias network, to advantageously decouple variations in the amplifier voltage supply from the bias network voltage supply. In yet another aspect, the bias voltages of transistors in the multi-cascode amplifier may be configured by adjusting the impedance of resistive voltage dividers coupled to the transistor gate biases. As the gain of the amplifier depends on the bias voltages of the cascode amplifiers, the gain of the amplifier may be adjusted in this manner without introducing a variable gain element directly in the amplifier signal path.
摘要:
Techniques are disclosed for extending an amplifier's linear operating range by concatenating an amplifier exhibiting gain compression with a gain expansion stage. In an exemplary embodiment, a gain expansion stage incorporates a Class-B stage, a Class-AB stage, or a combination of the two. In an exemplary embodiment, both the gain compression stage and gain expansion stage are provided with a replica current biasing scheme to ensure stable biasing current over variations in temperature, process, and/or supply voltage. Further disclosed is an output voltage biasing scheme to set the DC output voltage to ensure maximum linear operating range.
摘要:
Methods, apparatus, and means for maintaining a low output common-mode voltage in a driver are provided. One example apparatus includes a first differential amplifier stage configured to provide a differential output for the apparatus; and a second differential amplifier stage configured to drive the first differential amplifier stage, the second differential amplifier stage including a pair of pre-driver amplifiers, a pair of n-stage circuits, and an input skew averaging circuit, wherein each of the pair of n-stage units is split into two half blocks. The input skew averaging circuit is configured to suppress the output common-mode voltage by driving the blocks with complementary digital inputs to average out a skew in a gate-to-source voltage of the pair of n-stage circuits. For certain aspects, two feed-forward capacitors may be added to enhance the transconductance and operating speed of main transistors of the first differential amplifier stage.
摘要:
Techniques for protecting a power amplifier (PA) are described. In an exemplary design, an apparatus includes a PA module (310) to amplify an input RF signal and provide an output RF signal and a protection circuit (320) to control a transmitter gain to protect the PA module against high peak voltage. In an exemplary design, the protection circuit (329) includes a set of comparators (370) to quantize an analog input signal and provide digital comparator output signals used to adjust the transmitter gain. In another exemplary design, the protection circuit reduces and increases the transmitter gain with hysteresis. In yet another exemplary design, the protection circuit has faster response to rising amplitude than falling amplitude of the output RF signal. The hysteresis and/or the different rise and fall responses may allow the protection circuit to avoid toggling the transmitter gain under severe load mismatch and to handle time-varying envelope due to amplitude modulation.
摘要:
A multi-modulus divider (MMD) receives an MMD input signal and outputs an MMD output signal SOUT. The MMD includes a chain of modulus divider stages (MDSs). Each MDS receives an input signal, divides it by either two or three, and outputs the result as an output signal. Each MDS responds to its own modulus control signal that controls whether it divides by two or three. In one example, a sequential logic element outputs SOUT. The low jitter modulus control signal of one of the first MDS stages of the chain is used to place a sequential logic element into a first state. The output signal of one of the MDS stages in the middle of the chain is used to place the sequential logic element into a second state. Power consumption is low because the sequential logic element is not clocked at the high frequency of the MMD input signal.
摘要:
Differential signal output nodes of a novel CML buffer are DC-coupled by contiguous conductors to the differential signal input nodes of a load (for example, a CML logic element). The CML buffer includes a pulldown load latch that increases buffer transconductance and that provides a DC bias voltage across the conductors and onto the input nodes of the load, thereby obviating the need for the load to have DC biasing circuitry. Capacitors of a conventional AC coupling between buffer and load are not needed, thereby reducing the amount of die area needed to realize the circuit and thereby reducing the capacitance of the buffer-to-load connections. Switching power consumption is low due to the low capacitance buffer-to-load connections. Differential signals can be communicated from buffer to load over a wide frequency range of from less than five kilohertz to more than one gigahertz with less than fifty percent signal attenuation.
摘要:
A high linear fast peak detector having a variable bias current and/or a variable bias voltage is described. In an exemplary design, the peak detector includes a transistor, a variable current source, a capacitor, and a feedback circuit. The transistor receives the input signal and provides a source current. The variable current source receives the input signal, provides high bias current when the input signal is low, and provides low bias current when the input signal is high. The capacitor is charged by the source current when the input signal is high and is discharged by the high bias current when the input signal is low. The feedback circuit receives a detected signal from the capacitor and provides higher bias voltage for the transistor when the input signal is high, which results in higher source current from the transistor.
摘要:
A feed-forward bias circuit biases body bias terminals of transistors of another circuit to compensate for PVT variations in the other circuit. In some aspects, the feed-forward bias circuit compensates for transistor process corners in a circuit by enabling the generation of different bias signals under different corner conditions. In some implementations, the feed-forward bias circuit is used to bias a delay circuit so that the delay circuit exhibits relatively constant delay characteristics over different PVT conditions.
摘要:
Differential signal output nodes of a novel CML buffer are DC-coupled by contiguous conductors to the differential signal input nodes of a load (for example, a CML logic element). The CML buffer includes a pulldown load latch that increases buffer transconductance and that provides a DC bias voltage across the conductors and onto the input nodes of the load, thereby obviating the need for the load to have DC biasing circuitry. Capacitors of a conventional AC coupling between buffer and load are not needed, thereby reducing the amount of die area needed to realize the circuit and thereby reducing the capacitance of the buffer-to-load connections. Switching power consumption is low due to the low capacitance buffer-to-load connections. Differential signals can be communicated from buffer to load over a wide frequency range of from less than five kilohertz to more than one gigahertz with less than fifty percent signal attenuation.