摘要:
The subject disclosure is directed towards loading parallel memories (e.g., in one or more FPGAs) with multidimensional data in an interleaved manner such that a multidimensional patch/window may be filled with corresponding data in a single parallel read of the memories. Depending on the position of the patch, the data may be rotated horizontally and/or vertically, for example, so that the data in each patch is consistently arranged in the patch regardless of from which memory each piece of data was read. Also described is leveraging dual ported memory for multiple line reads and/or loading one part of a buffer while reading from another.
摘要:
The subject disclosure is directed towards loading parallel memories (e.g., in one or more FPGAs) with multidimensional data in an interleaved manner such that a multidimensional patch/window may be filled with corresponding data in a single parallel read of the memories. Depending on the position of the patch, the data may be rotated horizontally and/or vertically, for example, so that the data in each patch is consistently arranged in the patch regardless of from which memory each piece of data was read. Also described is leveraging dual ported memory for multiple line reads and/or loading one part of a buffer while reading from another.
摘要:
The subject disclosure is directed towards loading parallel memories (e.g., in one or more FPGAs) with multidimensional data in an interleaved manner such that a multidimensional patch/window may be filled with corresponding data in a single parallel read of the memories. Depending on the position of the patch, the data may be rotated horizontally and/or vertically, for example, so that the data in each patch is consistently arranged in the patch regardless of from which memory each piece of data was read. Also described is leveraging dual ported memory for multiple line reads and/or loading one part of a buffer while reading from another.
摘要:
The invention relates to a three-dimensional image acquisition system including: at least two projectors (20) aligned in a direction (x) and suitable for illuminating a scene (22), the projection axes of the projectors defining a plane for each projector (20), and being turned toward the scene (22), a first and second camera (24, 26) placed on one side of said plane, and a third and fourth camera (24', 26') placed on the other side of said plane, the optical axis of the first and second cameras (24, 26) forming, with said plane, a different first and second angle, respectively, the optical axis of the third and fourth cameras (24', 26') forming, with said plane, a different third and fourth angle, respectively.
摘要:
This invention concerns a measuring system for the calculation of dimensions, including area and volume, of objects in various shapes. In particular, it concerns miniature 3D measuring equipment that is perfectly suitable for 3D measurements of subcutaneous tumors in mice. The primary objective of this invention then also consists of a measuring system for 3D measurements of objects in various shapes, which includes a handheld device that has at least 1 camera, 1 projector and a measuring chamber. In another implementation, the handheld device will have 2 cameras and a projector and the 3D measurement is based on stereo-vision. Another objective is directed to ensuring that said handheld device also has a processor module, a user interface, a power supply, a data communication interface, and exchangeable measuring chambers which provide the flexibility and autonomy to speed up the measurement procedure, and significantly improve the reproducibility of the measurement.
摘要:
A method for generating codes for a code mask is provided. A plurality of symbols may be arranged into an n1 by n2 symbol structure, where n1 and n2 are integer values. A plurality of codewords may be defined from different overlapping k1 by k2 windows within the symbol structure, wherein co-linear and spatially overlapping windows define unique codewords, and the codewords are unique in a first direction of the symbol structure but are repeated in a second direction that is perpendicular to the first direction. A plurality of the symbol structures as a code mask, wherein symbols in two adjacent k1 by k2 windows are selected so as to avoid codeword aliasing of codewords in the two adjacent k1 by k2 windows.
摘要:
A method for preparing a clinical restraint for a subject, the method comprises scanning the portion of the subject to be restrained to produce a 3D image data set, generating a three dimensional replica of the portion of the subject from the 3D image data set and preparing a clinical restraint using the three dimensional replica. A scanning system for generating the 3D image data set comprising one or more projectors (6) and one or more cameras (8) in combination with an image processing device is also disclosed. The imaging aspects are also applied in the monitoring of the treatment of a patient, the manufacture and fitting of medical items, such as compression hosiery and the like, as well as in the fitting of garments and items of clothing.
摘要:
The invention relates to an optical measurement method for determining 3D coordinates of a plurality of measurement points on a measurement object surface (1s). To this end, the measurement object surface (1s) is illuminated with a pattern sequence of different patterns (2a) by a projector (3), an image sequence of the measurement object surface (1s) illuminated with the pattern sequence is recorded with a camera system, and the 3D coordinates of the measurement points are determined by evaluating the image sequence, in particular wherein a succession of brightness values for identical measurement points on the measurement object surface (1s) is ascertained in respective images of the recorded image sequence. According to the invention, translational and/or rotational accelerations of the projector (3), of the camera system and/or of the measurement object (1) are measured here and, in dependence on the measured accelerations, the illumination of the measurement object surface (1s) and/or the recording of the image sequence is/are reactively adapted, in particular temporally substantially directly and live during the measurement process.