Abstract:
Provided are alternatives for improving coding efficiency when an AR-FGS technique and an FGS motion refinement technique are applied to scalable video coding. When prediction of a residual signal an FGS layer is not performed, a ' prediction signal of a block related to the FGS layer is predicted in the same manner as the manner of predicting a prediction signal of a base quality layer. A scaling factor is allowed to have a non-zero value if required, and the residual signal of the FGS layer is used to determine a scaling factor of a higher FGS layer. The AR-FGS and FGS motion refinement techniques are restricted from being simultaneously used for key pictures.
Abstract:
The present invention discloses a tactile feedback device for giving realistic touch sensation to the user by stimulating the skin of the user. The tactile feedback device of the present invention comprises a housing having one end positioned near the skin of the user in use, an actuator, touch pins and an elastic means. The actuator is mounted inside the housing to convert electromagnetic energy into kinetic energy. The touch pins are mounted inside the housing so as to pop in and out, and the front end thereof is popped out of one end of the housing to contact the skin, and is connected with the actuator so as to be operated by kinetic energy of the actuator. The elastic plates of the elastic means are mounted between one end of the housing and the actuator, and have the touch pins fixedly passing through so as to be interlocked with the touch pins, and when the touch pins pop in and out, they are elastically deformed to have elastic energy. According to the present invention, the touch pins stimulate the skin of the user by dint of an interlocking structure of the actuator that converts electromagnetic energy into kinetic energy and the elastic means, so it is possible to implement realistic touch sensation.
Abstract:
The present invention relates to mutant microorganisms having improved productivity of branched-chain amino acids, and a method for producing branched-chain amino acids using the mutant microorganisms. More specifically, relates to mutant microorganisms having improved productivity of L-valine, which are produced by attenuating or deleting a gene encoding an enzyme involved in L-isoleucine biosynthesis, a gene encoding an enzyme involved in L-leucine, and a gene encoding an enzyme involved in D-pantothenic acid biosynthesis, and mutating a gene encoding an enzyme involved in L-valine biosynthesis, such that the expression thereof is increased, as well as a method for producing L-valine using the mutant microorganisms. The inventive mutant microorganisms produced by site- specific mutagenesis and metabolic pathway engineering can produce branched-chain amino acids, particularly L-valine, with high efficiency, and thus will be useful as industrial microorganisms for producing L-valine.
Abstract:
Disclosed herein is a membraneless micro fuel cell. A cathode fluid and an anode fluid with a low Reynolds number flowing along a cathode channel and an anode channel are formed to have an interface with each other through a micro passageway and to be mixed by only diffusion so that the direct mixing of the cathode fluid and the anode fluid is prevented, making it possible to prevent reactants from being depleted at an electrode surface as well as to increase the efficiency of the fuel cell.
Abstract:
A photoresist composition including an oxetane-containing compound represented by Formula 1 or 2, an oxirane-containing compound represented by Formula 3 or 4, a photoinitiator, and a solvent, a method of forming a pattern using the photoresist composition, and an inkjet print head including a polymerization product of the photoresist composition.
The photoresist composition provides a polymerization product which resists formation of cracks due to an inner stress, and has excellent heat tolerance, excellent chemical resistance, excellent adhesiveness, and excellent durability.
Abstract:
Apparatuses and methods for processing a bandwidth request in a multihop relay Broadband Wireless Access (BWA) communication system are provided. A communication method of a Relay Station (RS) includes determining a number of bandwidth request ranging codes received from Subscriber Stations (SSs); and reporting the number of the bandwidth request ranging codes to a Base Station (BS). A communication method of the BS includes allocating a resource to an RS to report on a number of detected bandwidth request ranging codes; and receiving a report on the number of the bandwidth request ranging codes using the allocated resource.
Abstract:
The present invention relates to a wavelength-division multiplexed passive optical network (WDM-PON) which embodies wavelength-independence of wavelength-locked Fabry Perot- Laser Diode (F-P LD). A WDM-PON of the present invention comprises an optical fiber being used for optical transmission to and from a broadband light source (BLS) with a low noise characteristic; first arrayed waveguide Gratings (AWG) for filtering light transmitted from the BLS which is oscillated in a plural mode into a group of n numbers wherein the first AWG have a bandwidth broader than a bandwidth of one mode of the BLS; n F-P LDs outputting wavelength-locked light by light being injected through the first AWG; a circulator bypassing and outputting wavelength-division multiplexed signals which are inputted through the first AWG and the optical fiber; and second AWG de-multiplexing the WDM signals into a group of n numbers wherein the second AWG have a bandwidth broader than the bandwidth of the BLS to be injected, wherein the number n is either the number of output ports of the first or second AWG or the number of channels of the WDM signals.
Abstract:
A method for measuring a brain wave comprises extracting positive and negative peaks from an electrocardiogram (EKG) signal reflecting heartbeat information, and positive peaks from an electroencephalogram (EEG) signal reflecting heartbeat-caused noise information and brain wave information. The positive peaks of the EEG signal are classified into a first peak group and a second peak group based on the positive peaks of the EKG signal. The first peak group is affected more greatly by the heartbeat than by the brain wave, and the second peak group is affected more greatly by the brain wave than by the heartbeat. Noise of the first and second peak groups is removed from the EEG signal.