Abstract:
Nitrogen oxide storage catalysts comprising a substrate and at least two coating layers, where the second layer is substantially free of platinum, cerium and barium, and methods of manufacturing and using these nitrogen oxide storage catalysts are disclosed.
Abstract:
The present invention relates to a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer disposed on the substrate, the first washcoat layer comprising metal oxide support particles and a nitrogen oxide storage material comprising at least one metal compound selected from the group consisting of alkaline earth meta! compounds, alkali metal compounds, rare earth metal compounds, and mixtures thereof, at least a portion of said at least one metal compound being supported on the metal oxide support particles; and a second washcoat layer disposed over the first washcoat layer, said second washcoat layer comprising Rh, wherein the first washcoat layer contains substantially no Rh, and wherein the second washcoat layer is disposed on 100 - x % of the surface of the first washcoat layer, x ranging from 20 to 80.
Abstract:
The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
Abstract:
A diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) is described. More particularly, the present invention is directed to a washcoat composition comprising high silica to alumina zeolite and platinum and palladium such that the zeolite minimizes negative interactions of these platinum group metals with the zeolite.
Abstract:
The present invention relates to a process for the preparation of a catalyst, said process comprising: (i) providing a substrate which is optionally coated with one or more coating layers; (ii) impregnating one or more particulate support materials with one or more platinum group elements; (iii) adding one or more alkaline earth elements and one or more solvents to the product obtained in step (ii) to obtain a slurry; (iv) adjusting the pH of the slurry obtained in step (iii) to a value comprised in the range of from 7 to 10, in case the pH should not fall within this range; (v) adjusting the pH of the slurry to a value comprised in the range of from 2 to 6; (vi) optionally milling the slurry obtained in step (v); (vii) providing the slurry obtained in step (vi) onto the optionally coated substrate in one or more coating steps, as well as to a catalyst which is obtainable according to said process and its use in the treatment of exhaust gas.
Abstract:
The present invention relates to a treatment system for a gasoline engine exhaust gas stream comprising a particulate filter, said particulate filter comprising: a particulate filter substrate, an inlet layer disposed on the exhaust gas inlet surface of the filter substrate, and an outlet layer disposed on the exhaust gas outlet surface of the filter substrate, wherein the inlet layer comprises Rh and/or Pd, and the outlet layer comprises Rh and/or a zeolite.
Abstract:
Disclosed is a catalyzed soot filter with layered design. The first coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd). The second coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the second coating is lower than the Pt concentration in the first coating and wherein the weight ratio of Pt:Pd in the second coating is in the range of from 1 : 1 to 0 : 1; and wherein the first coating and the second coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.25 to 3, calculated as ratio of the loading of the first coating (in g/inch3 (g/(2.54cm)3)): loading of the second coating (in g/inch3 (g/(2.54cm)3)).
Abstract:
The present invention relates to a catalyst comprising a substrate and a catalyst coating, the catalyst coating comprising two or more layers, said layers comprising: (a) a first layer provided on the substrate, said first layer comprising Pt and/or Pd; and (b) a second layer provided on the first layer, said second layer comprising Pt; the first and second layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals comprised in the one or more nitrogen oxide storage materials contained in the catalyst ranges from 0.18 to 2.5 g/in³ calculated as the respective alkali metal oxides M 2 O and alkaline earth metal oxides MO, as well as to a method for the production of a catalyst, and to a process for the treatment of a gas stream comprising nitrogen oxide, in particular of an exhaust gas stream resulting from an internal combustion engine.
Abstract:
The present invention relates to a treatment system for a gasoline engine exhaust gas stream comprising a particulate filter, said particulate filter comprising: a particulate filter substrate, an inlet layer disposed on the exhaust gas inlet surface of the filter substrate, and an outlet layer disposed on the exhaust gas outlet surface of the filter substrate, wherein the inlet layer comprises Rh and/or Pd, and the outlet layer comprises Rh and/or a zeolite.