Abstract:
A catalyzed soot filter, in particular for the treatment of Diesel engine exhaust, comprises a coating design which ensures soot particulates filtration, assists the oxidation of carbon monoxide (CO), and produces low H2S emissions during normal engine operations and regeneration events.
Abstract:
The present invention relates to a process for the preparation of a catalyst, said process comprising: (i) providing a substrate which is optionally coated with one or more coating layers; (ii) impregnating one or more particulate support materials with one or more platinum group elements; (iii) adding one or more alkaline earth elements and one or more solvents to the product obtained in step (ii) to obtain a slurry; (iv) adjusting the pH of the slurry obtained in step (iii) to a value comprised in the range of from 7 to 10, in case the pH should not fall within this range; (v) adjusting the pH of the slurry to a value comprised in the range of from 2 to 6; (vi) optionally milling the slurry obtained in step (v); (vii) providing the slurry obtained in step (vi) onto the optionally coated substrate in one or more coating steps, as well as to a catalyst which is obtainable according to said process and its use in the treatment of exhaust gas.
Abstract:
Described is a catalyst comprising a washcoat including copper or iron on a small pore molecular sieve material having a maximum ring size of eight tetrahedral atoms physically mixed with platinum and rhodium on a refractory metal oxide support including alumina, silica, zirconia, titania, and physical mixtures or chemical combinations thereof, including atomically doped combinations. Also described is a catalyst comprising a first washcoat zone including copper or iron on a small pore molecular sieve material having a maximum ring size of eight tetrahedral atoms, the first washcoat zone being substantially free of platinum group metal; and a second washcoat zone including copper or iron on a small pore molecular sieve material having a maximum ring size of eight tetrahedral atoms physically mixed with platinum or platinum and rhodium on a refractory metal oxide support including alumina, silica, zirconia, titania, and physical mixtures or chemical combinations thereof, including atomically doped combinations. Methods and systems for treating emissions are also described.
Abstract:
The present invention relates to a catalyst comprising a substrate and a catalyst coating, the catalyst coating comprising two or more layers, said layers comprising: (a) a first layer provided on the substrate, said first layer comprising Pd and Rh; and (b) a second layer provided on the first layer, said second layer comprising Pt and/or Pd; the first and second layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals comprised in the one or more nitrogen oxide storage materials contained in the catalyst ranges from 0.18 to 2.0 g/in³ calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO, as well as to a method for the production of a catalyst, and to a process for the treatment of a gas stream, in particular of an exhaust gas stream resulting from an internal combustion engine.
Abstract:
The present invention relates to a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer disposed on the substrate, the first washcoat layer comprising metal oxide support particles and a nitrogen oxide storage material comprising at least one metal compound selected from the group consisting of alkaline earth meta! compounds, alkali metal compounds, rare earth metal compounds, and mixtures thereof, at least a portion of said at least one metal compound being supported on the metal oxide support particles; and a second washcoat layer disposed over the first washcoat layer, said second washcoat layer comprising Rh, wherein the first washcoat layer contains substantially no Rh, and wherein the second washcoat layer is disposed on 100 - x % of the surface of the first washcoat layer, x ranging from 20 to 80.
Abstract:
Processes for manufacturing nitrogen oxide storage materials and lean NOx trap catalysts are disclosed. Also disclosed are nitrogen oxide storage material made by processes comprising barium carbonate (BaCO3) and ceria (CeO2) by using Ba(OH)2 instead of most or all Ba(OOCH3)2 to reduce cost and reduce harmful byproducts. Aspects of the present invention also relate generally to lean NOx trap (LNT) comprising nitrogen oxide storage materials.
Abstract:
A layered diesel oxidation catalyst (DOC) comprises: a) a carrier substrate; b) a diesel oxidation catalytic material comprising bl)a first layer located on the carrier substrate, the first layer comprising palladium impregnated on a support material comprising ceria in an amount of at least 45 weight% based on the total weight of the support material, and optionally comprising platinum; b2) a second layer located on the first layer, the second layer comprising palladium and platinum each impregnated on a support material comprising a metal oxide; wherein the platinum to palladium weight ratio of the first layer is lower than the platinum to palladium weight ratio of the second layer.