Abstract:
A detector (110) and a method for optically determining a position of at least one object (112). The detector (110) comprises at least one optical sensor (114) for determining a position of at least one light beam (134) and at least one evaluation device (164) for generating at least one item of information on a transversal position of the object (112) and at least one item of information on a longitudinal position of the object (112). The sensor (114) has at least a first electrode (126) and a second electrode (128). At least one photovoltaic material (130) is embedded in between the first electrode (126) and the second electrode (128). The first electrode (126) or the second electrode (128) is a split electrode (136) having at least three partial electrodes (140, 142, 144, 146). The detector and the method can determine three-dimensional coordinates of an object in a fast and efficient way.
Abstract:
A detector (110) for determining a position of at least one object (112), the detector (110) comprising: at least one GP transfer device (114) for imaging the object (112) into an image plane (116), the transfer device (114) having a focal plane (118), at least one longitudinal optical sensor (122), wherein the longitudinal optical sensor (122) has at least one sensor region (124), wherein the longitudinal optical sensor (122) is at least partially transparent, wherein the longitudinal optical sensor (122) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of sensor region (124) by at least one light beam propagating from the object to the detector (110), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam in the sensor region (124); and at least one evaluation device (129), wherein the evaluation device (129) is designed to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal. Herein the at least one longitudinal optical sensor (122) comprises a focal longitudinal optical sensor (136), wherein the focal longitudinal optical sensor (136) at least substantially is arranged in the focal plane (118).
Abstract:
A verification device (110) for verifying the identity of an article (114) is disclosed. The verification device (110) comprises: at least one illumination source (116) for illuminating at least one safety mark (124) of the article (114) with at least one light beam (122); at least one detector (118) adapted for detecting after an interaction of the light beam (122) with the safety mark (124), the detector (118) having at least one optical sensor (128), wherein the optical sensor (128) has at least one sensor region (130), wherein the optical sensor (128) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (130) by the light beam (122), wherein the sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (122) in the sensor region (130); and at least one evaluation device (120) adapted for evaluating the sensor signal and for verifying the identity of the article (114) on the basis of the sensor signal. Further, a verification system (112), a method for verifying the identity of an article (114) and a use of an optical sensor (128) for verifying the identity of an article (114) are disclosed.
Abstract:
A detector for optical detection of an object contains a modulation device generating at least one modulated light beam from the object to the detector; a longitudinal optical sensor having at least one sensor region and designed to generate at least one longitudinal sensor signal depending on an illumination of the sensor region by the modulated light beam; and an evaluation device designed to generate at least one item of information on a longitudinal position of the object. The longitudinal sensor signal contains a first component, which depends on a response of the longitudinal optical sensor to a variation of the modulation of the modulated light beam, and a second component, which depends on the total power of the illumination. The item of information is generated by deriving the first component and the second component from the longitudinal sensor signal.
Abstract:
A method of controlling pixels (134) of at least one spatial light modulator (114) is disclosed. The spatial light modulator (114) has a matrix of pixels (132). Each pixel (134) is individually controllable. The method comprises the following steps: receiving at least one image (331), (342); defining at least one image segment (333) within the image (331),(344); assigning at least one gray scale value to each image segment (333),(348); assigning at least one pixel (134) of the matrix of pixels (132) to each image segment (333),(350); assigning a unique modulation frequency to each gray scale value assigned to the at least one image segment (333),(352); controlling the at least one pixel (134) of the matrix of pixels (132) assigned to the at least one image segment (333) with the unique modulation frequency assigned to the respective image segment (333),(354).
Abstract:
An optical detector(110) is disclosed, comprising: at least one optical sensor(122) adapted to detect a light beam(120) and to generate at least one sensor signal, wherein the optical sensor(122) has at least one sensor region(124), wherein the sensor signal of the optical sensor(122) exhibits a non-linear dependency on an illumination of the sensor region(124) by the light beam (120) with respect to a total power of the illumination; at least one image sensor(128) being a pixelated sensor comprising a pixel matrix(174) of image pixels(176), wherein the image pixels(176) are adapted to detect the light beam(120) and to generate at least one image signal, wherein the image signal exhibits a linear dependency on the illumination of the image pixels(176) by the light beam(1,6) with respect to the total power of the illumination; and at least one evaluation device(132), the evaluation device(132) being adapted to evaluate the sensor signal and the image signal. In a particularly preferred embodiment, the non-linear dependency of the sensor signal on the total power of the illumination of the optical sensor(122) is expressible by a non-linear function comprising a linear part and a non-linear part, wherein the evaluation device(132) is adapted to determine the linear part and/or the non-linear part of the non-linear function by evaluating both the sensor signal and the image signal. Herein, the evaluation device(132), preferably, comprises a processing circuit(136) being adapted to provide a difference between the sensor signal and the image signal for determining the non-linear part of the non-linear function.
Abstract:
A data readout device (114) for reading out data from at least one data carrier (112) having data modules (116) located at least two different depths within the at least one data carrier (112) is disclosed. The data readout device (114) comprises: -at least one illumination source (122) for directing at least one light beam (124) onto the data carrier (112); -at least one detector (130) adapted for detecting at least one modified light beam modified by at least one of the data modules (116), the detector (130) having at least one optical sensor (132), wherein the optical sensor (132)has at least one sensor region (134), wherein the optical sensor (132)is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (134)by the modified light beam, wherein the sensor signal, given the same total power of the illumination,is dependent on a beam cross-section of the modified light beam in the sensor region (134); and -at least one evaluation device (136) adapted for evaluating the at least one sensor signal and for deriving data stored in the at least one data carrier (112) from the sensor signal. Further, a data storage system (110), a method for reading out data from at least one data carrier (112) and a use of an optical sensor (132) for reading out data are disclosed.
Abstract:
An optical detector (110) is disclosed, the optical detector (110) comprising: at least one spatial light modulator (114) being adapted to modify at least one property of a light beam (136) in a spatially resolved fashion, having a matrix (132) of pixels (134), each pixel (134) being controllable to individually modify the at least one optical property of a portion of the light beam (136) passing the pixel (134); at least one optical sensor (116) adapted to detect the light beam (136) after passing the matrix (132) of pixels (134) of the spatial light modulator (114) and to generate at least one sensor signal; at least one modulator device (118) adapted for periodically controlling at least two of the pixels (134) with different modulation frequencies; and at least one evaluation device (120) adapted for performing a frequency analysis in order to determine signal components of the sensor signal for the modulation frequencies.