摘要:
One embodiment of this invention is directed to an electronic article (10), formed in part from a polyetherimide resin having a repeating unit of formula I:
Another embodiment describes a capacitor (10) which includes a dielectric film (12) formed from such a polyetherimide resin. The capacitor (10) further includes at least one electrode (16) attached to a first surface of the dielectric film (12).
摘要:
Disclosed herein is a method of making a polymer composition comprising blending a polymeric material precursor with nanoparticles, wherein each nanoparticle comprises a substrate and a coating composition disposed on the substrate; and polymerizing the polymeric material precursor to form a polymeric material, wherein the nanoparticles are dispersed within the polymeric material to form a polymer composition.
摘要:
In one aspect of the present invention, an article is described, including a polymer layer; and a composite layer disposed on the polymer layer. The composite layer includes a thermoplastic polymer, which contains at least one inorganic component having selected dimensions; wherein the largest dimension of the inorganic component is less than about 1 micrometer. The composite layer has a dielectric constant, which is at least about 30 percent greater than the dielectric constant of the polymer layer. The article has a breakdown strength of at least about 150 kV/mm. Related devices are also described.
摘要:
In one aspect of the present invention, a method for increasing the dielectric breakdown strength of a polymer is described. The method comprises providing the polymer and contacting a surface of the polymer in a reaction chamber with a gas plasma, under specified plasma conditions. The polymer is selected from the group consisting of a polymer having a glass transition temperature of at least about 150°C, and a polymer composite comprising at least one inorganic constituent. The contact with the gas plasma is carried out for a period of time sufficient to incorporate additional chemical functionality into a surface region of the polymer film, to provide a treated polymer. Also provided are an article and method of manufacture.
摘要:
Disclosed herein is a method of making a polymer composition comprising blending a polymeric material precursor with nanoparticles, wherein each nanoparticle comprises a substrate and a coating composition disposed on the substrate; and polymerizing the polymeric material precursor to form a polymeric material, wherein the nanoparticles are dispersed within the polymeric material to form a polymer composition.
摘要:
A capacitor comprises a substrate layer (14), a first electrode layer (12) disposed on the substrate layer, and a first dielectric layer (16) disposed on the electrode layer (12). The dielectric layer (16) comprises inorganic ferroelectric or antiferroelectric particles, and a polymeric material having an elongation less than or equal to about 5 percent.
摘要:
A composition comprises a modified polymeric material and a ceramic antiferroelectric particle. The modified polymeric material comprises a thermoplastic polymer or a thermosetting polymer chemically combined with a polar group. A method of making a composition comprises chemically combining a high temperature polymer with a polar group to form a modified polymeric material; and combining the modified polymeric material with antiferroelectric particles to form a composite composition.
摘要:
A method for manufacturing an ultra-thin polymeric film is disclosed. The method includes the steps of melt blending of a polymeric composition or a nanocomposite composition in an extruder. Next, the molten composition is conveyed through a flat die with a small die lip gap. A melt pump may also be used to provide a constant, non-pulsating flow of the melted composition through the die. The melted composition may be passed through a filtration device to remove contaminants that could adversely affect the dielectric performance of the film. Next, the film is stretched by passing the film through take-up rollers at relatively high take-up speeds. Then, the composition is cooled to form a film or sheet. The edges of the film may be trimmed, and the film wound up on a roll using a tension-controlled winding mechanism. A heated roll may be used to temper/anneal the film, thereby eliminating frozen-in internal stresses.