Abstract:
A spectral camera for producing a spectral output is disclosed. The spectral camera has an objective lens for producing an image, an array of mirrors, an array of filters for passing a different passband of the optical spectrum for different ones of the optical channels arranged so as to project multiple of the optical channels onto different parts of the same focal plane, and a sensor array at the focal plane to detect the filtered image copies simultaneously. By using mirrors, there may be less optical degradation and the trade off of cost with optical quality can be better. By projecting the optical channels onto different parts of the same focal plane a single sensor or coplanar multiple sensors can to be used to detect the different optical channels simultaneously which promotes simpler alignment and manufacturing.
Abstract:
A spectral camera for producing a spectral output is disclosed. The spectral camera has an objective lens for producing an image, a mosaic of filters for passing different bands of the optical spectrum, and a sensor array arranged to detect pixels of the image at the different bands passed by the filters, wherein for each of the pixels, the sensor array has a cluster of sensor elements for detecting the different bands, and the mosaic has a corresponding cluster of filters of different bands, integrated on the sensor element so that the image can be detected simultaneously at the different bands. Further, the filters are first order Fabry-Perot filters, which can give any desired passband to give high spectral definition. Cross talk can be reduced since there is no longer a parasitic cavity.
Abstract:
A sensor device including one or more sensor elements and one or more optical filters (100) is provided. The one or more optical filters each include a plurality of dielectric layers (120) and a plurality of metal layers (130) stacked in alternation. The metal layers are intrinsically protected by the dielectric layers. In particular, the metal layers have tapered edges that are protectively covered by one or more of the dielectric layers.
Abstract:
A sensor device including one or more sensor elements and one or more optical filters (100) is provided. The one or more optical filters each include a plurality of dielectric layers (120) and a plurality of metal layers (130) stacked in alternation. The metal layers are intrinsically protected by the dielectric layers. In particular, the metal layers have tapered edges that are protectively covered by one or more of the dielectric layers.
Abstract:
A spectroscope 1A comprises a package 2 provided with a light entrance part 6, a plurality of lead pins 8 penetrating through a support part 4 opposing the light entrance part 6 in the package 2, and a spectroscopic module 3A supported on the support part 4 within the package 2. The spectroscopic module 3A has a light detection unit 20 provided with a light transmission part 22 for transmitting therethrough light L1 incident thereon from the light entrance part 6 and a spectroscopic unit 30, secured to the light detection unit 20 so as to be arranged on the support part 4 side of the light detection unit 20, including a spectroscopic part 35 for spectrally resolving the light L1 transmitted through the light transmission part 22 while reflecting the light to a light detection part 26. The lead pins 8 are fitted into fitting parts 29 provided with the light detection unit 20 and electrically connected to the light detection part 26.
Abstract:
A micro-machined optical measuring device including: a set of photosensitive detector elements situated on a given face of a first support; a second support, assembled to the first support, forming a prism and including a first face through which a visible radiation is intended to penetrate and a second face, forming a non-zero angle &thetas; with the first face and a non-zero angle α with the given face of the first support, the second face being semi-reflective, the first support and the second support being positioned such that an interferometric cavity is made between the second face and the given face, the distance between the given face of the first support and the second face of the second support varying regularly.
Abstract:
A structure for guiding electromagnetic radiation, comprising: a substrate (230); a waveguide (220) provided on the substrate and having a first end (220a) for receiving electromagnetic radiation and a second end (220b); and an anti-reflection region (270) provided at the second end (220b) of the waveguide on the substrate, the length and the width of the anti-reflection region being optimised to suppress back reflection of radiation that reaches the second end.