Abstract:
An absolute transmission accessory for a spectrometer. One example spectrometer system includes a base plate, a light source configured to transmit light, and an interferometer mounted to the base plate. The interferometer receives the light from the light source and output modulated light. The spectrometer system includes a first optical element configured to receive the modulated light and direct the modulated light, and a second optical element configured to receive the modulated light and focus the modulated light to a sample compartment. The spectrometer system includes a detector compartment including one or more detectors, the detector compartment configured to receive light from the sample compartment. The spectrometer system includes a sample holder coupled to the base plate. The modulated light is directed to the sample holder, and light exiting the sample holder is directed through the sample compartment and to the detector compartment via the second optical element.
Abstract:
Die Erfindung betrifft ein Verfahren zur Ermittlung zumindest einer Prüfeigenschaft eines Prüfgegenstands und eine Messvorrichtung, welche geeignet ist, ein Messfeld (3) unter einer Vielzahl an Anstrahlungskombinationen aus Einstrahlungswinkel (α) und/oder Wellenlängenbereich (A) mit elektromagnetischer Strahlung (5) anzustrahlen und die Intensität der jeweils von dem Messfeld unter zumindest einem Abstrahlungswinkel (β) remittierten elektromagnetischen Strahlung (5) zu messen. Die Prüfeigenschaft weist zumindest ein definiertes messbares Einzelmerkmal auf, wobei das Einzelmerkmal oder eine definierte Merkmalskombination mehrerer solcher Einzelmerkmale die Herkunft und/oder Identität des Prüfgegenstandes (1) belegt, wobei das Einzelmerkmal oder die Merkmalskombination messbar ist, wenn sie durch die elektromagnetische Strahlung (5) auf eine durch eine Auswahl an Anstrahlungkombinationen definierte Art und Weise optisch angeregt wird. Das Einzelmerkmal oder die Merkmalskombination wird mit der Messvorrichtung (4) in dieser Art und Weise angeregt und gemessen.
Abstract:
Provided herein are devices, systems, and methods for electrically-augmented damping of an actuator and associated devices. In particular, electrically-augmented damping derived from measurement of voltage across an actuator and current flowing through an actuator is provided.
Abstract:
A spectroscopic assembly (165) may include a spectrometer (110). The spectrometer may include an illumination source to generate a light to illuminate a sample. The spectrometer may include a sensor to obtain a spectroscopic measurement based on light, reflected by the sample, from the light illuminating the sample. The spectroscopic assembly may include a light pipe (120) to transfer the light reflected from the sample. The light pipe may include a first opening (146) to receive the spectrometer. The light pipe may include a second opening (148) to receive the sample, such that the sample is enclosed by the light pipe and a base surface when the sample is received at the second opening. The light pipe may be associated with aligning the illumination source and the sensor with the sample.
Abstract:
The invention relates to an arrangement for the spectrometric measurement of products such as cereals, oleaginous products or derived products. According to the invention, the arrangement is characterised in that it comprises a mechanism (17, 18, 19) for the selective adjustment of the position of the light beam in the vertical and horizontal planes, and a selective adjustment device for ensuring the parallelism of the rays of the light beam. The invention is especially applicable to the area of cereals.
Abstract:
In a spectroscopic module 1, a flange 7 is formed integrally with a diffraction layer 6 along a periphery thereof so as to become thicker than the diffraction layer 6. As a consequence, at the time of releasing a master mold used for forming the diffraction layer 6 and flange 7, the diffraction layer 6 formed along a convex curved surface 3a of a main unit 3 can be prevented from peeling off from the curved surface 3 a together with the master mold. A diffraction grating pattern 9 is formed so as to be eccentric with respect to the center of the diffraction layer 6 toward a predetermined side. Therefore, releasing the mold earlier from the opposite side of the diffraction layer 6 than the predetermined side thereof can prevent the diffraction layer 6 from peeling off and the diffraction grating pattern 9 from being damaged.
Abstract:
The present application provides a system (1) that comprises a mobile phone (25) to allow testing of samples from a patient at the point of care or environmental/industrial process monitoring tests to be performed in the field. The system (1) may be easily adapted for use with a variety of different mobile phones (25). The mobile phone (25) comprises an integrated camera (15). The system (1) further comprises an optical module (20) for receiving a sample for testing. The mobile phone (25) is configured to extract the intensity and/or color information from the camera (15).
Abstract:
An adjustable mount for an optical device in a laser spectroscopy system is provided. The adjustable mount includes body configured to mount to a process and a reflector mount having a feature configured to mount an optical device. An interface between the body and the reflector mount allows relative motion between the reflector mount and the body. At least one alignment device is configured to engage the reflector mount and the body to fix a position of the reflector mount relative to the body. An optical device is removably mounted to the reflector mount independent of the alignment device and is sealed to the reflector mount.