Abstract:
A system (10) and method of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system (10) includes an optical-sample module (20), a spectrometer module (100), an optical fiber assembly (90) optically connecting the optical-sample module (20) to the spectrometer module (100), and a processor module (150). The optical-sample module (20) has a light-emitting module (22) having a LED light source (28), a cuvette assembly (40) and a calibrating-light module (60). The processor module (150) receives and processes an electrical signal from the spectrometer module (100) and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.
Abstract:
The invention relates to a wideband hyperspectral spectrophotometer suitable for analysing an object (0), comprising: an illuminating assembly (S) comprising at least one source (Si) for emitting a light beam having a wavelength belonging to the ultra-violet domain in the direction of an object (0) to be analysed, said assembly (S) furthermore being configured to scan line by line the object (0) to be analysed by means of the emitting source (Si); a spherical focusing mirror (M2); a first redirecting mirror (M1) comprising a front face (M11) oriented toward the spherical focusing mirror (M2), said first face (M11) having a metal coating, the first mirror (M1) furthermore having a back face (M12) opposite the first front face (M11), said back face (M12) also comprising a metal coating, said first focusing mirror (M1) comprising in its centre a slit (F) configured to let pass a line of the beam emitted by the object (0); the first redirecting mirror (M1), the spherical focusing mirror (M2) and the slit (F) being arranged so that a fluorescent beam emitted by the object (0) after absorption by the object of the ultraviolet beam originating from the illuminating assembly is reflected from the first face (M11) of the first mirror (M1) toward the focusing mirror (M2), said focusing mirror (M2) then reflecting the beam thus focused toward the slit (F).
Abstract:
The invention relates to a spectrometer comprising a combination of at least one grid (1) and at least one prism (2), characterised in that total reflexion is used to produce a compact spectrometer in at least one prism (2).
Abstract:
A prism including a substrate faceted to provide a plurality of flat surfaces, wherein at least two of the plurality of surfaces, each including a filter coating, form at least two filter surfaces, wherein each filter surface selectively permits passage of a predetermined wavelength and reflects remaining wavelengths along an optical path towards another of the plurality of surfaces, optionally another filter surface, wherein an angle of incidence of each of the plurality of surfaces along the optical path is equal or nearly equal. An apparatus incorporating the prism and its use for splitting a light spectrum into a plurality of wavelengths or wavelength ranges.
Abstract:
Provided are a light source evaluation device, a light source adjustment system, a light source evaluation system, and a light source evaluation method whereby it is possible to evaluate the characteristics of a solar simulator, which is a light source for measuring the characteristics of a solar cell, without creating a reference cell or pseudo cell tailored to the spectral sensitivity of a solar cell to be measured. Said evaluation is performed by calculating an evaluation value of the characteristics of the light emitted by a solar simulator in comparison to natural sunlight on the basis of the spectral irradiance of the light emitted by a solar simulator as measured by a spectroradiometer, the spectral irradiance of natural sunlight, and the pre-measured spectral sensitivity of the solar cell to be measured.
Abstract:
A catoptric, wide-angle optical system includes at least three mirrors. Only the last mirror on the beam path (22) has a positive optical power and all other mirrors have negative optical power. The sum of the optical powers of the mirrors is zero. An external posterior aperture stop (35) is located on the beam path (22) between the last mirror and the image plane (24). The back focal length of the optical system (20) is equal to or greater than an effective focal length of the optical system (20). The field of view is large, and typically at least 30-40 degrees in one plane.
Abstract:
The present invention provides a small spectroscope that has a short response time. A spectroscope according to one embodiment of the present invention includes: a beam deflector that includes an electro-optic crystal, having an electro-optic effect, and paired electrodes used to apply an electric field inside the electro-optic crystal; spectroscopic means for dispersing light output by the beam deflector; and wavelength selection means for selecting light having an arbitrary wavelength from the light dispersed and output by the spectroscopic means.
Abstract:
Die Erfindung betrifft ein abbildendes Spektrometer zum Erzeugen eines spektral aufgelösten Bildes mit einem Spalt zum Hindurchlassen des von einem Objekt ausgehenden Lichts, einen optischen Pfad für durch den Spalt hindurchgehende Lichtstrahlen, wobei der optische Pfad gebildet wird durch eine erste Dispersionseinrichtung (11) zum Erzeugen einer spektralen Aufspaltung eines hindurchgehenden Lichtstrahls, wenigstens einer zweiten Dispersionseinrichtung (13) zum Erzeugen einer spektralen Aufspaltung des Lichtstrahls, wobei jede der Dispersionseinrichtungen (11, 13) so ausgebildet ist, daß sie von einem Lichtstrahl zweimal durchlaufen wird, und mit wenigstens einer zwischen der ersten Dispersionseinrichtung und der zweiten Dispersionseinrichtung vorgesehenen Reflexionseinrichtung (12) zum Reflektieren eines von der ersten Dispersionseinrichtung zurückkommenden Lichtstrahls. Die Dispersionseinrichtungen sind vorzugsweise als gekrümmte Prismen beispielsweise mit verspiegelter Rückseite (11b, 13b) ausgebildet. Die Dispersionseinrichtungen und die Reflexionseinrichtung haben vorzugsweise sphärisch gekrümmte Flächen und sind so angeordnet, daß die Krümmungsmittelpunkte der reflektierenden Flächen nach Art einer Offner-Konfiguration nahe beieinander liegen.