Abstract:
A multi-layered structure comprising an induction activation layer comprising a blend of (a) a first thermoplastic polymer, (b) a plurality of first particles, each said first particle comprising (i) a core comprising one or more magnetic materials and (ii) a shell comprising silicon dioxide; and (c) optionally a plurality of second particles, each said second particle comprising heat conducting particles; and a sealant, wherein the sealant exhibits a melting point equal to or lower than any other layer in the multi-layered structure, wherein the induction activation layer and sealant are in direct or indirect thermal contact is provided.
Abstract:
The invention provides compositions and methods relating to self-assembly of structures of various size and shape complexity. The composition include synthetic single-stranded polymers having a backbone and pre-determined linear arrangement of monomers.
Abstract:
Disclosed is a method for manufacturing a magnetic particle composite, which comprises the following steps: providing magnetic nanoparticles; providing water-soluble macromolecules, and dissolving the water-soluble macromolecules to form a water-soluble macromolecular solution; uniformly mixing the magnetic nanoparticles with the water-soluble macromolecular solution to form a first mixed solution; providing a dispersed solution, and uniformly mixing the dispersed solution with the frrst mixed solution to form a second mixed solution; and finally adding a hardener into the second mixed solution to form a magnetic particle composite. This manufacturing method is used to form a magnetic particle composite through control of boundary tension between immiscible liquid phases and to control the particle size of a finished product. Therefore, magnetic particle composites of different particle sizes and different saturation magnetization values can be manufactured by using a simple process at a low cost.
Abstract:
The present invention provides a manufacturing method of a magneto-resistive element capable of obtaining a higher MR ratio, in a method of forming a metal oxide layer (e.g., MgO layer) by oxidation treatment of a metal layer (e.g., Mg layer). An embodiment of the present invention includes the steps of; providing a substrate having a first ferromagnetic layer; fabricating a tunnel barrier layer on the first ferromagnetic layer; and forming a second ferromagnetic layer on the tunnel barrier layer. The step of fabricating the tunnel barrier layer includes; the steps of; depositing a first metal layer on the first ferromagnetic layer; oxidizing the first metal layer; depositing a second metal layer on the oxidized first metal layer; and performing heating treatment on the oxidized first metal layer and the second metal layer at a temperature at which the second metal layer boils.
Abstract:
Disclosed are magnetic nanoparticles and methods of using magnetic nanoparticles for selectively removing biologies, small molecules, analytes, ions, or other molecules of interest from liquids.
Abstract:
A thermosetting epoxy resin includes particles of magnetite and conductive carbon to act as microwave susceptors. A composite material comprises a thermosetting epoxy resin matrix phase with particles of magnetite and a carbon fibre reinforcement phase. A mould for a composite article comprises a mould body made from a material that is substantially transparent to microwaves with a surface or rear surface layer including microwave radiation absorbing material.
Abstract:
A flexible magnetic blend composition is provided which is comprised of high energy ferrite magnetic particles in a flexible high temperature resistant and oil resistant polymer binder. The binder system is preferably a highly saturated nitrile rubber (HSN) or a polymer alloy of the same in which a HSN is the major polymer containing alloying polymers and/or additives which are compatible with processing, subsequent electron beam curing, and final product performance. The system binder is highly loaded usually from 55 to 65 volume percent with the high energy ferrite particles, i.e, barium and/or strontium ferrite particles, which can produce bonded magnets with a maximum energy product of at least 1.0 megagauss-oersteds, a remenance, Br, of at least 2000 gauss, a coercive force, H c , of at least 1800 oersteds, and an intrinsic coercivity, H ci , of at least 2000 oersteds. The process for production of this system involves the binder system and ferrite particles being mixed, the ferrite particles oriented in a preferred direction during processing, then formed into a final geometry before being cured by high voltage electron beam radiation, preferably in excess of 3,000,000 electron volts. The electron beam curing in the solid state fixes dimensional stability, magnetic properties, oil, solvent, and chemical resistance of the part even when exposed to subsequent hostile temperature environments of 125 o C or higher. Any off geometry parts or trim produced in the process prior to radiation curing can be recycled through processing several times without fear of premature cure.
Abstract:
A flexible magnetic blend composition is provided which is comprised of high energy ferrite magnetic particles in a flexible high temperature resistant and oil resistant polymer binder. The binder system is preferably a highly saturated nitrile rubber (HSN) or a polymer alloy of the same in which a HSN is the major polymer containing alloying polymers and/or additives which are compatible with processing, subsequent electron beam curing, and final product performance. The system binder is highly loaded usually from 55 to 65 volume percent with the high energy ferrite particles, i.e, barium and/or strontium ferrite particles, which can produce bonded magnets with a maximum energy product of at least 1.0 megagauss-oersteds, a remenance, Br, of at least 2000 gauss, a coercive force, H c , of at least 1800 oersteds, and an intrinsic coercivity, H ci , of at least 2000 oersteds. The process for production of this system involves the binder system and ferrite particles being mixed, the ferrite particles oriented in a preferred direction during processing, then formed into a final geometry before being cured by high voltage electron beam radiation, preferably in excess of 3,000,000 electron volts. The electron beam curing in the solid state fixes dimensional stability, magnetic properties, oil, solvent, and chemical resistance of the part even when exposed to subsequent hostile temperature environments of 125 o C or higher. Any off geometry parts or trim produced in the process prior to radiation curing can be recycled through processing several times without fear of premature cure.
Abstract:
The present application relates to a resin composition for 3D printing, a 3D printing method using the same, and a three-dimensional shape comprising the same, and provides a resin composition which is capable of precisely forming a three-dimensional shape and implementing uniform curing properties of a three-dimensional shape.