摘要:
A magnetoresistance effect element has a first ferromagnetic metal layer, a second ferromagnetic metal layer, and a tunnel barrier layer that is sandwiched between the first and second ferromagnetic metal layers, the tunnel barrier layer is expressed by a chemical formula of AB 2 O x , and has a spinel structure in which cations are arranged in a disordered manner, A represents a divalent cation that is either Mg or Zn, and B represents a trivalent cation that includes a plurality of elements selected from the group consisting of Al, Ga, and In.
摘要:
The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
摘要:
A magnetoresistance effect element has a first ferromagnetic metal layer, a second ferromagnetic metal layer, and a tunnel barrier layer that is sandwiched between the first and second ferromagnetic metal layers, the tunnel barrier layer is expressed by a chemical formula of AB 2 O x , and has a spinel structure in which cations are arranged in a disordered manner, A represents a divalent cation that is either Mg or Zn, and B represents a trivalent cation that includes a plurality of elements selected from the group consisting of Al, Ga, and In.
摘要:
Spin-transport elements using semiconductors have had the problem of higher element resistance than conventional GMR elements and TMR elements, making it difficult to obtain high magnetoresistance ratios. A magnetoresistive element including a semiconductor channel layer (3); a first ferromagnetic layer (12A) disposed on the semiconductor channel layer (3); a second ferromagnetic layer (12B) disposed away from the first ferromagnetic layer (12A); and a non-magnetic first reference electrode (20) disposed away from the first ferromagnetic layer (12A) and the second ferromagnetic layer (12B), wherein current is input from the second ferromagnetic layer (12B) to the first ferromagnetic layer (12A) through the semiconductor channel layer (3), a voltage between the second ferromagnetic layer (12B) and the first reference electrode (20) is output.
摘要:
The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
摘要:
An apparatus comprising: a passive array 202 of resistive elements 250; a row selector switch 204 and a column selector switch 206 configured to respectively connect a particular row and a particular column of resistive elements to ground; and a feedback column selector switch 208 configured to connect all columns of resistive elements to a voltage source, except for the particular column connected to ground by the column selector switch; the voltage source configured to apply a voltage to the columns of resistive elements, the voltage matching a voltage dropped over the resistive element connected in circuit by the row and column selector switches; and further comprising: a row selector switch compensation circuit 220, a column selector switch compensation circuit 240 and/or a feedback column selector switch compensation circuit 260 each configured to apply a voltage across a corresponding dummy element equal and opposite to a voltage dropped over the corresponding selector switch.
摘要:
The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
摘要:
A tunneling magnetoresistance (TMR) device, like a magnetic recording disk drive read head, has a nitrogen-containing layer between the MgO barrier layer and the free and/or reference ferromagnetic layers that contain boron. In one embodiment the free ferromagnetic layer includes a boron-containing layer and a trilayer nanolayer structure between the MgO barrier layer and the boron-containing layer. The trilayer nanolayer structure includes a thin Co, Fe or CoFe first nanolayer in contact with the MgO layer, a thin FeN or CoFeN second nanolayer on the first nanolayer and a thin Co, Fe or CoFe third nanolayer on the FeN or CoFeN nanolayer between the FeN or CoFeN nanolayer and the boron-containing layer. If the reference ferromagnetic layer also includes a boron-containing layer then a similar trilayer nanolayer structure may be located between the boron-containing layer and the MgO barrier layer.