Abstract:
A method for microphotometering individual volume elements of a microscope specimen, comprising generating a luminous dot or cursor and progressively illuminating a plurality of part elements in the focal plane of the microscope (30) through the specimen. The mutual position between the specimen and the focal plane is then changed and a plurality of part elements in the focal plane are illuminated. Reflected and/or fluorescent light and transmitted light respectively created by the illumination is collected, detected and stored for generating a three-dimensional image of that part of the specimen composed of the volume elements. Illumination of multiples of part elements is deflected by deflecting the luminous cursor or by moving the specimen or by both deflecting the cursor and also displacing the specimen. The change in the relative mutual position between the specimen and the focal plane of the microscope (30) is effected either by displacing the specimen or the objective. Apparatus for carrying out the method include a specimen table (301), a microscope objective and light source (31, 32, 33). The table (301) or the objective are arranged for stepwise movement along the main axis of the microscope synchronously with punctilinear light scanning of the specimen. The table (301) is arranged for stepwise movement at right angles to the main axis and/or the light source (31, 32, 33) is arranged for deflection over the focal plane through the specimen.
Abstract:
There is provided a method of avoiding deterioration of the accuracy in the number of detected light-emitting particles due to that two or more light-emitting particles are encompassed at a time in the light detection region in the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique, in the detection of an individual signal indicating light of a light-emitting particle in a manner that a signal having an intensity beyond a threshold value is selectively detected as a signal indicating light of a light-emitting particle in light intensity data produced through measuring light intensity during moving the position of a light detection region in a sample solution by changing the optical path of the optical system of the confocal microscope or multiphoton microscope, the threshold value is set so that a signal indicating light from a light-emitting particle encompassed in a region narrower than the light detection region in the light detection region will be detected selectively.
Abstract:
Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
Abstract:
The description relates to a device for handling, treating and observing small particles, especially biological particles. A first laser (4) generates light beams in a first wavelength range which are focussed by a first optical device (12, 13; 14, 15) and form an optical trap. A slide (22) holds corresponding particles. There is also a light source (17) for observation purposes and observation and recording devices for observing the particles and recording their behaviour. A second laser (3) generates light beams in a second wavelength range which are focussed so that particles on the slide may be treated. The optical devices for the light beams can be positioned and adjusted independently of each other and thus the light beams can be focussed in the same object plane of the slide at the start of treatment and observation independently of their wavelengths.
Abstract:
Appareil de détection optique de contamination absorbant la lumière dans une particule au moins de matière à faible perte optique, comprenant une chambre d'intégration optique servant à contenir les particules. Un laser émettant un rayon laser afin d'illuminer les particules est monté dans le plan de rotation d'un miroir pivotant de manière à balayer en éventail. Un ensemble de balayage est monté dans l'alignement optique du laser afin de réfléchir le rayon laser pour que celui-ci balaye les particules contenues dans la chambre d'intégration optique. Un système de focalisation est monté dans l'alignement du laser, afin de focaliser le rayon laser de balayage sur les particules contenues dans la chambre, le système de focalisation opérant en conjonction avec le système de balayage, de telle sorte que la lumière du rayon soit réfléchie à partir des particules et diffusée de manière répétitive contre les parois internes de la chambre d'intégration. Un système de détection de la lumière est logé dans la chambre d'intégration afin de capter la lumière diffusée de manière répétitive contre les parois internes de la chambre d'intégration et de générer un signal indiquant l'intensité de la lumière ainsi diffusée. Toute décroissance de l'intensité de la lumière ainsi diffusée est fonction de la présence dans la matière en question d'une contamination absorbant la lumière.
Abstract:
A method and apparatus for measuring a defect distribution comprising introducing a narrowed laser beam into an object to be observed, receiving scattering lights generated at the defect portions of the object by a photoelectric conversion element, and measuring automatically the density and density distribution of the defects inside the object on the basis of the output image data of the photoelectric conversion element.